
TRAINING & REFERENCE

murach’s

Java
programming
(Chapter 2)

Thanks for downloading this chapter from Murach’s Java Programming. We hope it
will show you how easy it is to learn from any Murach book, with its paired-pages
presentation, its “how-to” headings, its practical coding examples, and its clear, concise
style.

To view the full table of contents for this book, you can go to our web site. From there,
you can read more about this book, you can find out about any additional downloads
that are available, and you can review our other books on Java development.

Thanks for your interest in our books!

MIKE MURACH & ASSOCIATES, INC.
1-800-221-5528 • (559) 440-9071 • Fax: (559) 440-0963
murachbooks@murach.com • www.murach.com
Copyright © 2011 Mike Murach & Associates. All rights reserved.

http://www.murach.com/books/javp/index.htm
http://www.murach.com/
mailto:murachbooks@murach.com
http://www.murach.com/

What developers have said about previous editions
of Murach’s Java

"Finally there is a Java book for serious programmers doing real life business
applications."

Donna Dean, IS Trainer, Chicago, Illinois

"I bought your Java book a week ago and I am already writing useful
programs, not ‘toys!’"

Richard Cooper, Programmer

"The absolute best teaching text for Java among the gazillions of self-hyped
tutorials and skills books on the market today."

Posted at Amazon.com

"I love your Java book. It cuts right to the essential information, providing the
perfect balance between too many details and too little information. Example
apps are incredible. Keep up the good work."

Steve, Programmer, Denver, Colorado

"Terrific - Fantastic - Superlative! WELL worth several times the purchase
price."

Posted at Amazon.com

"Murach's Java is now my go-to source for reference and learning and
brushing up, well above and beyond the other books in my collection."

Jeff Salter, Sacramento Java Users Group (SacJUG)

"If I’d seen this book first, I would not have wasted money (and time) on 6
other books! This one is highly organized, clear, and very effective as a
learning tool."

Posted at Amazon.com

"The style is clean, very user friendly, and simple. The narrative is totally
accurate and focuses on important issues; it is not dumbed down. This book is
a winner!"

Dr. Richard Wiener, Editor-in-Chief, Journal of Object Technology

Chapter 2 Introduction to Java Programming 35

2
Introduction
to Java programming
Now that you know the basic skills for using NetBeans to work with Java
projects, the quickest and best way to learn Java programming is to do Java
programming. That’s why this chapter shows you how to write complete Java
programs that get input from a user, make calculations, and display output.
When you finish this chapter, you should be able to write comparable programs
of your own.

Basic coding skills ... 36
How to code statements .. 36
How to code comments .. 36
How to create identifiers ... 38
How to declare a class and a main method ... 40

How to work with numeric variables 42
How to declare and initialize variables ... 42
How to code assignment statements ... 44
How to code arithmetic expressions ... 44

How to work with string variables 46
How to create a String object ... 46
How to join and append strings .. 46
How to include special characters in strings .. 48

How to use Java classes, objects, and methods 50
How to create objects and call methods ... 50
How to import Java classes ... 52
How to use the API documentation to research Java classes 54

How to use the console for input and output 56
How to use the System.out object to print output to the console 56
How to use the Scanner class to read input from the console 58
Examples that get input from the console .. 60

How to code simple control statements 62
How to compare numeric variables .. 62
How to compare string variables .. 62
How to code if/else statements ... 64
How to code while statements .. 66

Two illustrative applications.. 68
The Invoice application .. 68
The Test Score application ... 70

How to test and debug an application 72
How to test an application .. 72
How to debug an application .. 72

Perspective .. 74

36 Section 1 Essential Java skills

Basic coding skills
This chapter starts by introducing you to some basic coding skills. You’ll use

these skills for every Java program you develop.

How to code statements

The statements in a Java program direct the operation of the program. When
you code a statement, you can start it anywhere in a coding line, you can con-
tinue it from one line to another, and you can code one or more spaces anywhere
a single space is valid. In the first example in figure 2-1, the lines that aren’t
shaded are statements.

To end most statements, you use a semicolon. But when a statement requires
a set of braces {}, it ends with the right brace. Then, the statements within the
braces are referred to as a block of code. For example, the InvoiceApp class and
the main method shown in this figure both contain a block of code.

To make a program easier to read, you should use indentation and spacing to
align statements and blocks of code. This is illustrated by the program in this
figure and by all of the programs and examples in this book.

How to code comments

Comments are used in Java programs to document what the program does
and what specific blocks and lines of code do. Since the Java compiler ignores
comments, you can include them anywhere in a program without affecting your
code. In the first example in figure 2-1, the comments are shaded.

A single-line comment is typically used to describe one or more lines of
code. This type of comment starts with two slashes (//) that tell the compiler to
ignore all characters until the end of the current line. In the first example in this
figure, you can see four single-line comments that are used to describe groups of
statements. The other comment is coded after a statement. This type of comment
is sometimes referred to as an end-of-line comment.

The second example in this figure shows how to code a block comment. This
type of comment is typically used to document information that applies to a
block of code. This information can include the author’s name, program comple-
tion date, the purpose of the code, the files used by the code, and so on.

Although many programmers sprinkle their code with comments, that
shouldn’t be necessary if you write code that’s easy to read and understand.
Instead, you should use comments only to clarify code that’s difficult to under-
stand. In this figure, for example, an experienced Java programmer wouldn’t
need any of the single-line comments.

One problem with comments is that they may not accurately represent what
the code does. This often happens when a programmer changes the code, but
doesn’t change the comments that go along with it. Then, it’s even harder to
understand the code because the comments are misleading. So if you change the
code that you’ve written comments for, be sure to change the comments too.

Chapter 2 Introduction to Java Programming 37

An application consists of statements and comments
import java.util.Scanner;

public class InvoiceApp
{
 public static void main(String[] args)
 {
 // display a welcome message
 System.out.println("Welcome to the Invoice Total Calculator");
 System.out.println(); // print a blank line

 // get the input from the user
 Scanner sc = new Scanner(System.in);
 System.out.print("Enter subtotal: ");
 double subtotal = sc.nextDouble();

 // calculate the discount amount and total
 double discountPercent = .2;
 double discountAmount = subtotal * discountPercent;
 double invoiceTotal = subtotal - discountAmount;

 // format and display the result
 String message = "Discount percent: " + discountPercent + "\n"
 + "Discount amount: " + discountAmount + "\n"
 + "Invoice total: " + invoiceTotal + "\n";
 System.out.println(message);
 }
}

A block comment that could be coded at the start of a program
/*
 * Author: J. Murach
 * Purpose: This program uses the console to get a subtotal from the user,
 * and it calculates the discount amount and total and displays them.
*/

Description
• Java statements direct the operations of a program, while comments are used to help

document what the program does.

• You can start a statement at any point in a line and continue the statement from one
line to the next. To make a program easier to read, you should use indentation and
extra spaces to align statements and parts of statements.

• Most statements end with a semicolon. But when a statement requires a set of braces
{ }, the statement ends with the right brace. Then, the code within the braces can be
referred to as a block of code.

• To code a single-line comment, type // followed by the comment. You can code a
single-line comment on a line by itself or after a statement. A comment that’s coded
after a statement is sometimes called an end-of-line comment.

• To code a block comment, type /* at the start of the block and */ at the end. You can
also code asterisks to identify the lines in the block, but that isn’t necessary.

Figure 2-1 How to code statements and comments

38 Section 1 Essential Java skills

How to create identifiers

As you code a Java program, you need to create and use identifiers. These
are the names in the program that you define. In each program, for example,
you need to create an identifier for the name of the program and for the vari-
ables that are used by the program.

Figure 2-2 shows you how to create identifiers. In brief, you must start each
identifier with a letter, underscore, or dollar sign. After that first character, you
can use any combination of letters, underscores, dollar signs, or digits.

Since Java is case-sensitive, you need to be careful when you create and use
identifiers. If, for example, you define an identifier as CustomerAddress, you
can’t refer to it later as Customeraddress. That’s a common coding error.

When you create an identifier, you should try to make the name both
meaningful and easy to remember. To make a name meaningful, you should use
as many characters as you need, so it’s easy for other programmers to read and
understand your code. For instance, netPrice is more meaningful than nPrice,
and nPrice is more meaningful than np.

To make a name easy to remember, you should avoid abbreviations. If, for
example, you use nwCst as an identifier, you may have difficulty remembering
whether it was nCust, nwCust, or nwCst later on. If you code the name as
newCustomer, though, you won’t have any trouble remembering what it was.
Yes, you type more characters when you create identifiers that are meaningful
and easy to remember, but that will be more than justified by the time you’ll
save when you test, debug, and maintain the program.

For some common identifiers, though, programmers typically use just one
or two lowercase letters. For instance, they often use the letters i, j, and k to
identify counter variables. You’ll see examples of this later in this chapter.

Notice that you can’t create an identifier that is the same as one of the Java
keywords. These 50 keywords are reserved by the Java language and are the
basis for that language. To help you identify keywords in your code, Java IDEs
display these keywords in a different color than the rest of the Java code. For
example, NetBeans displays keywords in blue. As you progress through this
book, you’ll learn how to use almost all of these keywords.

Chapter 2 Introduction to Java Programming 39

Valid identifiers
InvoiceApp $orderTotal i
Invoice _orderTotal x
InvoiceApp2 input_string TITLE
subtotal _get_total MONTHS_PER_YEAR
discountPercent $_64_Valid

The rules for naming an identifier
• Start each identifier with a letter, underscore, or dollar sign. Use letters, dollar

signs, underscores, or digits for subsequent characters.

• Use up to 255 characters.

• Don’t use Java keywords.

Keywords
boolean if interface class true
char else package volatile false
byte final switch while throws
float private case return native
void protected break throw implements
short public default try import
double static for catch synchronized
int new continue finally const
long this do transient goto
abstract super extends instanceof null

Description
• An identifier is any name that you create in a Java program. These can be the

names of classes, methods, variables, and so on.

• A keyword is a word that’s reserved by the Java language. As a result, you can’t use
keywords as identifiers.

• When you refer to an identifier, be sure to use the correct uppercase and lowercase
letters because Java is a case-sensitive language.

Figure 2-2 How to create identifiers

40 Section 1 Essential Java skills

How to declare a class and a main method

In the last chapter, you learned that if you use NetBeans to create a project, it
can generate a main class with a main method for the project. Although you saw
the code for four different classes and three different main methods in chapter 1,
figure 2-3 now presents the syntax for declaring any class or main method. Even
if you use NetBeans, you should be familiar with this syntax.

To code a class, you begin with a class declaration. In the syntax for declar-
ing a class, the boldfaced words are Java keywords, and the words that aren’t
boldfaced represent code that the programmer supplies. The bar (|) in this syntax
means that you have a choice between the two items that the bar separates. In this
case, the bar means that you can start the declaration with the public keyword or
the private keyword.

The public and private keywords are access modifiers that control the scope
of a class. Usually, a class is declared public, which means that other classes can
access it. Later in this book, you’ll learn when and how to use private classes.

After the public keyword and the class keyword, you code the name of the
class using the basic rules for creating an identifier. When you do, it’s a common
coding convention to start every word within a class name with a capital letter
and to use letters and digits only. We also recommend that you use a noun or a
noun that’s preceded by one or more adjectives for your class names.

After the class name, the syntax summary shows a left brace, the statements
that make up the class, and a right brace. It’s a good coding practice, though, to
type your ending brace right after you type the starting brace to prevent missing
braces. When you use NetBeans, the ending brace is automatically added after
you type the starting brace and then press the Enter key.

The two InvoiceApp classes in this figure show how a class works. Notice
that the only difference between the two classes is where the opening braces for
the class and the block of code within the class are placed. Although either
technique is acceptable, we’ve chosen to use the first technique for this book
whenever possible.

Within a class, you code one or more methods, which are pieces of code that
perform the actions of the application (they’re similar to functions in some
programming languages). As you know, the main method is a special kind of
method that’s automatically executed when the class that contains it is run. All
Java programs contain a main method that starts the program.

To code a main method, you begin by coding a main method declaration
within the class declaration as shown in the two InvoiceApp classes in this figure.
Although I won’t describe this declaration, you should know that all main
method declarations are coded exactly as shown. You’ll learn more about the
keywords used by this declaration later in this book.

To make the structure of the main method clear, it’s indented and its starting
and ending braces are aligned so it’s easy to see where the method begins and
ends. Then, between the braces, you can see the one statement that this main
method performs. This statement displays a message to the user, and you’ll learn
more about it later in this chapter.

Chapter 2 Introduction to Java Programming 41

The syntax for declaring a class
public|private class ClassName
{
 statements
}

The syntax for declaring a main method
public static void main(String[] args)
{
 statements
}

A public class named InvoiceApp that contains a main method
public class InvoiceApp // declare the class
{ // begin the class
 public static void main(String[] args)
 {
 System.out.println("Welcome to the Invoice Total Calculator");
 }
} // end the class

The same class with different brace placement
public class InvoiceApp { // declare and begin the class
 public static void main(String[] args){
 System.out.println("Welcome to the Invoice Total Calculator");
 }
} // end the class

The rules for naming a class
• Start the name with a capital letter.
• Use letters and digits only.
• Follow the other rules for naming an identifier.

Recommendations for naming a class
• Start every word within a class name with an initial cap.
• Each class name should be a noun or a noun that’s preceded by one or more adjectives.

Description
• A Java application consists of one or more classes that start with a class declaration. You

write the code for the class within the opening and closing braces of the declaration.

• The public and private keywords are access modifiers that control what parts of the
program can use the class. Most classes are declared public, which means that the class
can be used by all parts of the program.

• The file name for a class is the same as the class name with java as the extension.

• A method is a block of code that performs a task.

• Every Java application contains one main method that you can declare exactly as shown
above. This is called the main method declaration.

• The statements between the braces in a main method declaration are run when the pro-
gram is executed.

Figure 2-3 How to declare a class and a main method

42 Section 1 Essential Java skills

How to work with numeric variables

In this topic, you’ll learn how to work with numeric variables. This will
introduce you to the use of variables, assignment statements, arithmetic expres-
sions, and two of the eight primitive data types that are supported by Java. Then,
you can learn all the details about working with the primitive data types in the
next chapter.

How to declare and initialize variables

A variable is used to store a value that can change as a program executes.
Before you can use a variable, you must declare its data type and name, and you
must assign a value to it to initialize it. The easiest way to do that is shown in
figure 2-4. Just code the data type, the variable name, the equals sign, and the
value that you want to assign to the variable.

This figure also summarizes two of the eight Java data types. You can use
the int data type to store integers, which are numbers that don’t contain decimal
places (whole numbers), and you can use the double data type to store numbers
that contain decimal places. In the next chapter, you’ll learn how to use the six
other primitive data types, but these are the two that you’ll probably use the
most.

As you can see in the summary, the double data type can be used to store
numbers with up to 16 significant digits. In case you aren’t familiar with
significant digits, they include any digit that identifies the precision of a num-
ber. That includes any non-zero digit as well as any zero digits between two
non-zero digits and any zero digits at the end of a number with decimal places.
For business applications, you’ll rarely need to use numbers with more than 16
significant digits.

To illustrate the declaration of variables, the first example in this figure
declares an int variable named scoreCounter with an initial value of 1. And the
second example declares a double variable named unitPrice with an initial value
of 14.95. When you assign values to double types, it’s a good coding practice to
include a decimal point, even if the initial value is a whole number. If, for
example, you want to assign the number 29 to the variable, you should code the
number as 29.0.

If you follow the naming recommendations in this figure as you name the
variables, it will make your programs easier to read and understand. In particu-
lar, you should capitalize the first letter in each word of the variable name,
except the first word, as in scoreCounter or unitPrice. This is commonly re-
ferred to as camel notation.

When you initialize a variable, you can assign a literal value like 1 or 14.95
to the variable as illustrated by the examples in this figure. However, you can
also initialize a variable to the value of another variable as shown in the second
example in this figure or to the value of an expression like the arithmetic
expressions shown in the next figure.

Chapter 2 Introduction to Java Programming 43

Two of the eight primitive data types

Type Description

int Integers from -2,147,483,648 to 2,147,483,647.

double Numbers with decimal places and up to 16 significant digits.

How to declare and initialize a variable in one statement
Syntax
type variableName = value;

Examples
int scoreCounter = 1; // initialize an integer variable
double unitPrice = 14.95; // initialize a double variable

How to code assignment statements
int quantity = 0; // initialize an integer variable
int maxQuantity = 100; // initialize another integer variable

// two assignment statements
quantity = 10; // quantity is now 10
quantity = maxQuantity; // quantity is now 100

Description
• A variable stores a value that can change as a program executes.

• Java provides for eight primitive data types that you can use for storing values in
memory. The two that you’ll use the most are the int and double data types. In the
next chapter, you’ll learn how to use the other primitive data types.

• The int data type is used for storing integers (whole numbers). The double data
type is used for storing numbers that can have one or more decimal places.

• Before you can use a variable, you must declare its data type and assign an initial
value to the variable. It’s common to initialize integer variables to 0 and double
variables to 0.0.

• An assignment statement assigns a value to a variable. This value can be a literal
value, another variable, or an expression like the arithmetic expressions that you’ll
learn how to code in the next figure. If a variable has already been declared, the
assignment statement doesn’t include the data type of the variable.

Naming recommendations for variables
• Start variable names with a lowercase letter and capitalize the first letter in all

words after the first word.

• Each variable name should be a noun or a noun preceded by one or more
adjectives.

• Try to use meaningful names that are easy to remember.

Figure 2-4 How to declare and initialize variables

44 Section 1 Essential Java skills

How to code assignment statements

After you declare a variable, you can assign a new value to it. To do that,
you code an assignment statement. In a simple assignment statement, you code
the variable name, an equals sign, and a new value. The new value can be a
literal value or the name of another variable as shown in figure 2-4. Or, the new
value can be the result of an expression like the arithmetic expressions shown in
figure 2-5.

How to code arithmetic expressions

To code simple arithmetic expressions, you can use the four arithmetic
operators that are summarized in figure 2-5. As the first group of statements
shows, these operators work the way you would expect them to with one
exception. If you divide one integer into another integer, any decimal places are
truncated. In contrast, if you divide a double into a double, the decimal places
are included in the result.

When you code assignment statements, it’s common to code the same
variable on both sides of the equals sign. For example, you can add 1 to the
value of a variable named counter with a statement like this:

counter = counter + 1;

In this case, if counter has a value of 5 when the statement starts, it will have a
value of 6 when the statement finishes. This concept is illustrated by the second
and third groups of statements.

What happens when you mix integer and double variables in the same
arithmetic expression? The integers are cast (converted) to doubles so the
decimal places can be included in the result. To retain the decimal places,
though, the result variable must be a double. This is illustrated by the fourth
group of statements.

Although it’s not shown in this figure, you can also code expressions that
contain two or more operators. When you do that, you need to be sure that the
operations are done in the correct sequence. You’ll learn more about that in the
next chapter.

Chapter 2 Introduction to Java Programming 45

The basic operators that you can use in arithmetic expressions

Operator Name Description

+ Addition Adds two operands.

- Subtraction Subtracts the right operand from the left operand.

* Multiplication Multiplies the right operand and the left operand.

/ Division Divides the right operand into the left operand. If both
operands are integers, then the result is an integer.

Statements that use simple arithmetic expressions
// integer arithmetic
int x = 14;
int y = 8;
int result1 = x + y; // result1 = 22
int result2 = x - y; // result2 = 6
int result3 = x * y; // result3 = 112
int result4 = x / y; // result4 = 1

// double arithmetic
double a = 8.5;
double b = 3.4;
double result5 = a + b; // result5 = 11.9
double result6 = a - b; // result6 = 5.1
double result7 = a * b; // result7 = 28.9
double result8 = a / b; // result8 = 2.5

Statements that increment a counter variable
int invoiceCount = 0;
invoiceCount = invoiceCount + 1; // invoiceCount = 1
invoiceCount = invoiceCount + 1; // invoiceCount = 2

Statements that add amounts to a total
double invoiceAmount1 = 150.25;
double invoiceAmount2 = 100.75;
double invoiceTotal = 0.0;
invoiceTotal = invoiceTotal + invoiceAmount1; // invoiceTotal = 150.25
invoiceTotal = invoiceTotal + invoiceAmount2; // invoiceTotal = 251.00

Statements that mix int and double variables
int result9 = invoiceTotal / invoiceCount // result9 = 125
double result10 = invoiceTotal / invoiceCount // result10 = 125.50

Description
• An arithmetic expression consists of one or more operands and arithmetic

operators.

• When an expression mixes the use of int and double variables, Java automatically
casts the int types to double types. To retain the decimal places, the variable that
receives the result must be a double.

• In the next chapter, you’ll learn how to code expressions that contain two or more
operators.

Figure 2-5 How to code arithmetic expressions

46 Section 1 Essential Java skills

How to work with string variables

In the topics that follow, you’ll learn some basic skills for working with
strings. For now, these skills should be all you need for many of the programs
you develop. Keep in mind, though, that many programs require extensive string
operations. That’s why chapter 13 covers strings in more detail.

How to create a String object

A string can consist of any letters, numbers, and special characters. To
declare a string variable, you use the syntax shown in figure 2-6. Although this
is much like the syntax for declaring a numeric variable, a string is an object
that’s created from the String class when a string variable is declared. Then, the
String object refers to string data. When you declare a string variable, you must
capitalize the String keyword because it is the name of a class, not a primitive
data type.

In the next topic and in chapter 7, you’ll learn more about classes and
objects. For now, though, all you need to know is that string variables work
much like numeric variables, except that they store string data instead of nu-
meric data.

When you declare a String object, you can assign a string literal to it by
enclosing the characters within double quotes. You can also assign an empty
string to it by coding a set of quotation marks with nothing between them.
Finally, you can use the null keyword to assign a null value to a String object.
That indicates that the value of the string is unknown.

How to join and append strings

If you want to join, or concatenate, two or more strings into one, you can
use the + operator. For example, you can join a first name, a space, and a last
name as shown in the second example in figure 2-6. Then, you can assign that
string to a variable. Notice that when concatenating strings, you can use string
variables or string literals.

You can also join a string with a primitive data type. This is illustrated in the
third example in this figure. Here, a variable that’s defined with the double data
type is appended to a string. When you use this technique, Java automatically
converts the double value to a string.

You can use the + and += operators to append a string to the end of a string
that’s stored in a string variable. If you use the + operator, you need to include
the variable on both sides of the = operator. Otherwise, the assignment state-
ment will replace the old value with the new value instead of appending the old
value to the new value. Since the += operator provides a shorter and safer way
to append strings, this operator is commonly used.

Chapter 2 Introduction to Java Programming 47

The syntax for declaring and initializing a string variable
String variableName = value;

Example 1: How to declare and initialize a string
String message1 = "Invalid data entry.";
String message2 = "";
String message3 = null;

Example 2: How to join strings
String firstName = "Bob"; // firstName is Bob
String lastName = "Smith"; // lastName is Smith
String name = firstName + " " + lastName; // name is Bob Smith

Example 3: How to join a string and a number
double price = 14.95;
String priceString = "Price: " + price;

Example 4: How to append one string to another with the + operator
firstName = "Bob"; // firstName is Bob
lastName = "Smith"; // lastName is Smith
name = firstName + " "; // name is Bob followed by a space
name = name + lastName; // name is Bob Smith

Example 5: How to append one string to another with the += operator
firstName = "Bob"; // firstName is Bob
lastName = "Smith"; // lastName is Smith
name = firstName + " "; // name is Bob followed by a space
name += lastName; // name is Bob Smith

Description
• A string can consist of any characters in the character set including letters, num-

bers, and special characters like *, &, and #.
• In Java, a string is actually a String object that’s created from the String class that’s

part of the Java API (Application Programming Interface). The API provides all the
classes that are included as part of the JDK.

• To specify the value of a string, you can enclose text in double quotation marks.
This is known as a string literal.

• To assign a null value to a string, you can use the null keyword. This means that the
value of the string is unknown.

• To assign an empty string to a String object, you can code a set of quotation marks
with nothing between them. This means that the string doesn’t contain any
characters.

• To join (or concatenate) a string with another string or a data type, use a plus sign.
Whenever possible, Java will automatically convert the data type so it can be used
as part of the string.

• When you append one string to another, you add one string to the end of another.
To do that, you can use assignment statements.

• The += operator is a shortcut for appending a string expression to a string variable.

Figure 2-6 How to create and use strings

48 Section 1 Essential Java skills

How to include special characters in strings

Figure 2-7 shows how to include certain types of special characters within a
string. In particular, this figure shows how to include backslashes, quotation
marks, and control characters such as new lines, tabs, and returns in a string. To
do that, you can use the escape sequences shown in this figure.

As you can see, each escape sequence starts with a backslash. The
backslash tells the compiler that the character that follows should be treated as a
special character and not interpreted as a literal value. If you code a backslash
followed by the letter n, for example, the compiler will include a new line
character in the string. You can see how this works in the first example in this
figure. If you omitted the backslash, of course, the compiler would just include
the letter n in the string value. The escape sequences for the tab and return
characters work similarly, as you can see in the second example.

To code a string literal, you enclose it in double quotes. If you want to
include a double quote within a string literal, then, you must use an escape
sequence. This is illustrated in the third example. Here, the \" escape sequence
is used to include two double quotes within the string literal.

Finally, you need to use an escape sequence if you want to include a
backslash in a string literal. To do that, you code two backslashes as shown in
the fourth example. If you code a single backslash, the compiler will treat the
next character as a special character. That will cause a compiler error if the
character isn’t a valid special character. And if the character is a valid special
character, the results won’t be what you want.

Chapter 2 Introduction to Java Programming 49

Common escape sequences

Sequence Character

\n New line

\t Tab

\r Return

\" Quotation mark

\\ Backslash

Example 1: New line
String
"Code: JSPS\nPrice: $49.50"

Result
Code: JSPS
Price: $49.50

Example 2: Tabs and returns
String
"Joe\tSmith\rKate\tLewis"

Result
Joe Smith
Kate Lewis

Example 3: Quotation marks
String
"Type \"x\" to exit"

Result
Type "x" to exit

Example 4: Backslash
String
"C:\\java\\files"

Result
C:\java\files

Description
• Within a string, you can use escape sequences to include certain types of special

characters.

Figure 2-7 How to include special characters in strings

50 Section 1 Essential Java skills

How to use Java classes, objects,
and methods

So far, you’ve learned how to create String objects from the String class in
the Java API. As you develop Java applications, though, you need to use dozens
of different Java classes and objects. To do that, you need to know how to create
objects from Java classes, how to call Java methods, and how to import Java
classes.

How to create objects and call methods

To use a Java class, you usually start by creating an object from the class.
As the syntax in figure 2-8 shows, you do that by coding the Java class name,
the name that you want to use for the object, an equals sign, the new keyword,
and the Java class name again followed by a set of parentheses. Within the
parentheses, you code any arguments that are required by the constructor of the
object that’s defined in the class.

In the examples, the first statement shows how to create a Scanner object
named sc. The constructor for this object requires just one argument
(System.in), which represents console input. In contrast, the second statement
creates a Date object named now that represents the current date, but its con-
structor doesn’t require any arguments. As you go through this book, you’ll
learn how to create objects with constructors that require two or more argu-
ments, and you’ll see that a single class can provide more than one constructor
for creating objects.

When you create an object, you can think of the class as the template for the
object. That’s why the object can be called an instance of the class, and the
process of creating the object can be called instantiation. Whenever necessary,
you can create more than one object or instance from the class. For instance,
you often use several String objects in a single program.

Once you’ve created an object from a class, you can use the methods of the
class. To call one of these methods, you code the object name, a dot (period),
and the method name followed by a set of parentheses. Within the parentheses,
you code the arguments that are required by the method.

In the examples, the first statement calls the nextDouble method of the
Scanner object named sc to get data from the console. The second statement
calls the toString method of the Date object named now to convert the date and
time that’s stored in the object to a string. Neither one of these methods requires
an argument, but you’ll soon see some that do.

Besides methods that you can call from an object, some classes provide
static methods that can be called directly from the class. To do that, you substi-
tute the class name for the object name as illustrated by the third set of ex-
amples. Here, the first statement calls the toString method of the Double class,
and the second statement calls the parseDouble method of the Double class.
Both of these methods require one argument.

Chapter 2 Introduction to Java Programming 51

How to create an object from a class
Syntax
ClassName objectName = new ClassName(arguments);

Examples
Scanner sc = new Scanner(System.in); // creates a Scanner object named sc
Date now = new Date(); // creates a Date object named now

How to call a method from an object
Syntax
objectName.methodName(arguments)

Examples
double subtotal = sc.nextDouble(); // get a double entry from the console
String currentDate = now.toString(); // convert the date to a string

How to call a static method from a class
Syntax
ClassName.methodName(arguments)

Examples
String sPrice = Double.toString(price); // convert a double to a string
double total = Double.parseDouble(userEntry); // convert a string to a double

Figure 2-8 How to create objects and call methods

Description
• When you create an object from a Java class, you are creating an instance of the

class. Then, you can use the methods of the class by calling them from the object.

• Some Java classes contain static methods. These methods can be called directly
from the class without creating an object.

• When you create an object from a class, the constructor may require one or more
arguments. These arguments must have the required data types, and they must be
coded in the correct sequence separated by commas.

• When you call a method from an object or a class, the method may require one or
more arguments. Here again, these arguments must have the required data types
and they must be coded in the correct sequence separated by commas.

• Although you can use the syntax shown in this figure to create a String object, the
syntax in figure 2-6 is the preferred way to do that. Once a String object is created,
though, you call its methods from the object as shown above.

• In this book, you’ll learn how to use dozens of the Java classes and methods. You
will also learn how to create your own classes and methods.

52 Section 1 Essential Java skills

Incidentally, you can also use the syntax shown in this figure to create a
String object. However, the preferred way to create a String object is to use the
syntax shown in figure 2-6. Once a String object is created, though, you use the
syntax in this figure to call one of its methods. You’ll see examples of this later
in this chapter.

In the pages and chapters that follow, you’ll learn how to use dozens of
classes and methods. For now, though, you just need to focus on the syntax for
creating an object from a class, for calling a method from an object, and for
calling a static method from a class. Once you understand that, you’re ready to
learn how to import the Java classes you need for your programs.

How to import Java classes

In the API for the Java SE, groups of related classes are organized into
packages. In figure 2-9, you can see a list of some of the commonly used
packages. Since the java.lang package contains the classes that are used in
almost every Java program (such as the String class), this package is automati-
cally made available to all programs.

To use a class from a package other than java.lang, though, you’ll typically
include an import statement for that class at the beginning of the program. If
you don’t, you’ll still be able to use the class, but you’ll have to qualify it with
the name of the package that contains it each time you refer to it. Since that can
lead to a lot of unnecessary typing, we recommend that you always code an
import statement for the classes you use.

When you code an import statement, you can import a single class by
specifying the class name, or you can import all of the classes in the package by
typing an asterisk (*) in place of the class name. The first two statements in this
figure, for example, import a single class, while the next two import all of the
classes in a package. Although it requires less code to import all of the classes
in a package at once, importing one class at a time clearly identifies the classes
you’re using.

As this figure shows, Java provides two different technologies for building a
graphical user interface (GUI) that contains text boxes, command buttons,
combo boxes, and so on. The older technology, known as the Abstract Window
Toolkit (AWT), was used with versions 1.0 and 1.1 of Java. Its classes are stored
in the java.awt package. Since version 1.2 of Java, though, a new technology
known as Swing has been available. The Swing classes are stored in the
javax.swing package. In general, many of the newer package names begin with
javax instead of java. Here, the x indicates that these packages can be consid-
ered extensions to the original Java API.

In addition to the packages provided by the Java API, you can get packages
from third party sources, either as open-source code or by purchasing them. For
more information, check the Java web site. You can also create packages that
contain classes that you’ve written. You’ll learn how to do that in chapter 10.

Chapter 2 Introduction to Java Programming 53

Common packages

Package name Description

java.lang Provides classes fundamental to Java, including classes that work with
primitive data types, strings, and math functions.

java.text Provides classes to handle text, dates, and numbers.

java.util Provides various utility classes including those for working with collections.

java.io Provides classes to read data from files and to write data to files.

java.sql Provides classes to read data from databases and to write data to databases.

java.applet An older package that provides classes to create an applet.

java.awt An older package called the Abstract Window Toolkit (AWT) that provides
classes to create graphical user interfaces.

java.awt.event A package that provides classes necessary to handle events.

javax.swing A newer package called Swing that provides classes to create graphical user
interfaces and applets.

The syntax of the import statement
import packagename.ClassName;
 or
import packagename.*;

Examples
import java.text.NumberFormat;
import java.util.Scanner;
import java.util.*;
import javax.swing.*;

How to use the Scanner class to create an object
With an import statement
Scanner sc = new Scanner(System.in);

Without an import statement
java.util.Scanner sc = new java.util.Scanner(System.in);

Description
• The API for the Java SE provides a large library of classes that are organized into

packages.

• All classes stored in the java.lang package are automatically available to all Java
programs.

• To use classes that aren’t in the java.lang package, you can code an import state-
ment as shown above. To import one class from a package, specify the package
name followed by the class name. To import all classes in a package, specify the
package name followed by an asterisk (*).

• If you don’t code an import statement for a class, you must qualify the class name
with the name of the package that contains it each time you refer to the class.

Figure 2-9 How to import Java classes

54 Section 1 Essential Java skills

How to use the API documentation
to research Java classes

If you refer back to figure 2-2, you can see that the Java language consists
of just 50 keywords that you can master with relative ease. What’s difficult
about using Java, though, is mastering the hundreds of classes and methods that
your applications will require. To do that, you frequently need to study the API
documentation that comes with Java, and that is one of the most time-consum-
ing aspects of Java programming.

Figure 2-10 summarizes some of the basic techniques for navigating
through the API documentation. Here, you can see the start of the documenta-
tion for the Scanner class, which goes on for many pages. To get there, you
click on the package name in the upper left frame and then on the class name in
the lower left frame.

If you scroll through the documentation for this class, you’ll get an idea of
the scale of the documentation that you’re dealing with. After a few pages of
descriptive information, you come to a summary of the eight constructors for
the class. After that, you come to a summary of the dozens of methods that the
class offers. That in turn is followed by more detail about the constructors, and
then by more detail about the methods.

At this point in your development, this is far more information than you can
handle. That’s why one of the goals of this book is to introduce you to the
dozens of classes and methods that you’ll use in most of the applications that
you develop. Once you’ve learned those, the API documentation will make
more sense to you, and you’ll be able to use that documentation to research
classes and methods that aren’t presented in this book. To get you started with
the use of objects and methods, figure 2-12 will show you how to use the
Scanner class.

It’s never too early to start using the documentation, though. So by all
means use the documentation to get more information about the methods that
are presented in this book and to research the other methods that are offered by
the classes that are presented in this book. After you learn how to use the
Scanner class, for example, take some time to do some research on that class.
You’ll get a chance to do that in exercise 2-4.

Chapter 2 Introduction to Java Programming 55

The documentation for the Scanner class

Description
• The Java SE API contains thousands of classes and methods that can help you do

most of the tasks that your applications require.

• You can use a browser to view the Java SE API on the Internet by going to this
address:
http://download.oracle.com/javase/7/docs/api/index.html

• You can select the name of the package in the top left frame to display information
about the package and the classes it contains. Then, you can select a class in the
lower left frame to display the documentation for that class in the right frame.

• Once you display the documentation for a class, you can scroll through it or click
on a hyperlink to get more information.

• To make it easier to access the API documentation, you should bookmark the index
page. Then, you can easily redisplay this page whenever you need it.

Figure 2-10 How to use the API documentation to research Java classes

56 Section 1 Essential Java skills

How to use the console
for input and output

Most of the applications that you write will require some type of user
interaction. In particular, most applications will get input from the user and
display output to the user. Ever since version 1.5 of Java, the easiest way to get
input is to use the new Scanner class to retrieve data from the console. And the
easiest way to display output is to print it to the console.

How to use the System.out object
to print output to the console

To print output to the console, you can use the println and print methods of
the System.out object as shown in figure 2-11. Here, System.out refers to an
instance of the PrintStream class. Because this object is created automatically
by Java, you don’t have to include code that creates it in your program.

Both the println and print methods accept a string argument that specifies
the data to be printed. The only difference between the two is that the println
method starts a new line after it displays the data, and the print method doesn’t.

If you study the examples in this figure, you shouldn’t have any trouble
using these methods. For instance, the first statement in the first example uses
the println method to print the words “Welcome to the Invoice Total Calculator”
to the console. The second statement prints the string “Total: ” followed by the
value of the total variable (which is automatically converted to a string by this
join). The third statement prints the value of the variable named message to the
console. And the fourth statement prints a blank line since no argument is
coded.

Because the print method doesn’t automatically start a new line, you can
use it to print several data arguments on the same line. For instance, the three
statements in the second example use the print method to print “Total: ”, fol-
lowed by the total variable, followed by a new line character. Of course, you can
achieve the same result with a single line of code like this:

System.out.println("Total: " + total);

This figure also shows an application that uses the println method to print
seven lines to the console. In the main method of this application, the first four
statements set the values for four variables. Then, the next seven statements
print a welcome message, a blank line, the values for the four variables, and
another blank line.

When you work with console applications, you should know that the
appearance of the console may differ slightly depending on the operating
system. Even if the console looks a little different, however, it should work the
same.

Chapter 2 Introduction to Java Programming 57

Two methods of the System.out object

Method Description

println(data) Prints the data argument followed by a new line character to the console.

print(data) Prints the data to the console without starting a new line.

Example 1: The println method
System.out.println("Welcome to the Invoice Total Calculator");
System.out.println("Total: " + total);
System.out.println(message);
System.out.println(); // print a blank line

Example 2: The print method
System.out.print("Total: ");
System.out.print(total);
System.out.print("\n");

Example 3: An application that prints data to the console
public class InvoiceApp
{
 public static void main(String[] args)
 {
 // set and calculate the numeric values
 double subtotal = 100; // set subtotal to 100
 double discountPercent = .2; // set discountPercent to 20%
 double discountAmount = subtotal * discountPercent;
 double invoiceTotal = subtotal - discountAmount;

 // print the data to the console
 System.out.println("Welcome to the Invoice Total Calculator");
 System.out.println();
 System.out.println("Subtotal: " + subtotal);
 System.out.println("Discount percent: " + discountPercent);
 System.out.println("Discount amount: " + discountAmount);
 System.out.println("Total: " + invoiceTotal);
 System.out.println();
 }
}

The console output

Welcome to the Invoice Total Calculator

Subtotal: 100.0
Discount percent: 0.2
Discount amount: 20.0
Total: 80.0

Description
• Although the appearance of a console may differ from one system to another, you

can always use the print and println methods to print data to the console.

Figure 2-11 How to use the System.out object to print output to the console

58 Section 1 Essential Java skills

How to use the Scanner class
to read input from the console

Figure 2-12 shows how you can use the Scanner class to read input from the
console. To start, you create a Scanner object by using a statement like the one
in this figure. Here, sc is the name of the Scanner object that is created and
System.in represents console input, which is the keyboard. Like the System.out
object, the System.in object is created by Java automatically. Because of that,
you can use this object with a Scanner object whenever you want to get console
input.

Once you’ve created a Scanner object, you can use the next methods to read
data from the console. The method you use depends on the type of data you
need to read. To read string data, for example, you use the next method. To read
integer data, you use the nextInt method. To read double data, you use the
nextDouble method. And to read all of the data on a line, you use the nextLine
method.

The examples in this figure illustrate how these methods work. Here, the
first statement gets a string and assigns it to a string variable named name. The
second statement gets an integer and assigns it to an int variable named count.
The third statement gets a double and assigns it to a double variable named
subtotal. And the fourth statement reads any remaining characters on the line.

Each entry that a user makes is called a token, and a user can enter more
than one token before pressing the Enter key. To do that, the user separates the
entries by one or more space, tab, or return characters. This is called
whitespace. Then, each next method gets the next token that has been entered.
If, for example, you press the Enter key (a return character), type 100, press the
Tab key, type 20, and press the Enter key again, the first token is 100 and the
second one is 20.

If you want to get string data that includes whitespace, you can use the
nextLine method. If, for example, the user enters “New York” and presses the
Enter key, you can use the nextLine method to get the entire entry as a single
string.

If the user doesn’t enter the type of data that the next method is looking for,
an error occurs and the program ends. In Java, an error like this is also known as
an exception. If, for example, the user enters a double value but the nextInt
method is used to get it, an exception occurs. In chapter 5, you’ll learn how to
prevent this type of error.

Although this figure only shows methods for working with String objects
and int and double types, the Scanner class includes methods for working with
most of the other data types that you’ll learn about in the next chapter. It also
includes methods that let you check what type of data the user entered. As
you’ll see in chapter 5, you can use these methods to avoid exceptions by
checking the data type before you issue the next method.

Chapter 2 Introduction to Java Programming 59

The Scanner class
java.util.Scanner

How to create a Scanner object
Scanner sc = new Scanner(System.in);

Common methods of a Scanner object

Method Description

next() Returns the next token stored in the scanner as a String object.

nextInt() Returns the next token stored in the scanner as an int value.

nextDouble() Returns the next token stored in the scanner as a double value.

nextLine() Returns any remaining input on the current line as a String
object and advances the scanner to the next line.

How to use the methods of a Scanner object
String name = sc.next();
int count = sc.nextInt();
double subtotal = sc.nextDouble();
String cityName = sc.nextLine();

Description
• To create a Scanner object that gets input from the console, specify System.in in the

parentheses.

• When one of the next methods of the Scanner class is run, the application waits for
the user to enter data with the keyboard. To complete the entry, the user presses the
Enter key.

• Each entry that a user makes is called a token. A user can enter two or more tokens
by separating them with whitespace, which consists of one or more spaces, tab
characters, or return characters.

• The entries end when the user presses the Enter key. Then, the first next, nextInt, or
nextDouble method gets the first token; the second next, nextInt, or nextDouble
method gets the second token; and so on. In contrast, the nextLine method gets all
of the input or remaining input on the current line.

• If the user doesn’t enter the type of data that the next method expects, an error
occurs and the program ends. In Java, this type of error is called an exception.
You’ll learn more about this in chapter 5.

• Since the Scanner class is in the java.util package, you’ll want to include an import
statement whenever you use this class.

Note
• The Scanner class was introduced in version 1.5 of the JDK.

Figure 2-12 How to use the Scanner class to read input from the console

60 Section 1 Essential Java skills

Examples that get input from the console

Figure 2-13 presents two examples that get input from the console. The first
example starts by creating a Scanner object. Then, it uses the print method of
the System.out object to prompt the user for three values, and it uses the next
methods of the Scanner object to read those values from the console. Because
the first value should be a string, the next method is used to read this value.
Because the second value should be a double, the nextDouble method is used to
read it. And because the third value should be an integer, the nextInt method is
used to read it.

After all three values are read, a calculation is performed using the int and
double values. Then, the data is formatted and the println method is used to
display the data on the console. You can see the results of this code in this
figure.

Unlike the first example, which reads one value per line, the second ex-
ample reads three values in a single line. Here, the first statement uses the print
method to prompt the user to enter three integer values. Then, the next three
statements use the nextInt method to read those three values. This works be-
cause a Scanner object uses whitespace (spaces, tabs, or returns) to separate the
data that’s entered at the console into tokens.

Chapter 2 Introduction to Java Programming 61

Example 1: Code that gets three values from the user
// create a Scanner object
Scanner sc = new Scanner(System.in);

// read a string
System.out.print("Enter product code: ");
String productCode = sc.next();

// read a double value
System.out.print("Enter price: ");
double price = sc.nextDouble();

// read an int value
System.out.print("Enter quantity: ");
int quantity = sc.nextInt();

// perform a calculation and display the result
double total = price * quantity;
System.out.println();
System.out.println(quantity + " " + productCode
 + " @ " + price + " = " + total);
System.out.println();

The console after the program finishes

Enter product code: cshp
Enter price: 49.50
Enter quantity: 2

2 cshp @ 49.5 = 99.0

Example 2: Code that reads three values from one line
// read three int values
System.out.print("Enter three integer values: ");
int i1 = sc.nextInt();
int i2 = sc.nextInt();
int i3 = sc.nextInt();

// calculate the average and display the result
int total = i1 + i2 + i3;
int avg = total / 3;
System.out.println("Average: " + avg);
System.out.println();

The console after the program finishes

Enter three integer values: 99 88 92
Average: 93

Figure 2-13 Examples that get input from the console

62 Section 1 Essential Java skills

How to code simple control statements

As you write programs, you need to determine when certain operations
should be done and how long repetitive operations should continue. To do that,
you code control statements like the if/else and while statements. This topic will
get you started with the use of these statements, but first you need to learn how to
write expressions that compare numeric and string variables.

How to compare numeric variables

Figure 2-14 shows how to code Boolean expressions that use the six rela-
tional operators to compare int and double data types. This type of expression
evaluates to either true or false based on the result of the comparison, and the
operands in the expression can be either variables or literals.

For instance, the first expression in the first set of examples is true if the
value of the variable named discountPercent is equal to the literal value 2.3. The
second expression is true if the value of subtotal is not equal to zero. And the
sixth expression is true if the value of the variable named quantity is less than or
equal to the value of the variable named reorderPoint.

Although you shouldn’t have any trouble coding simple expressions like
these, you must remember to code two equals signs instead of one for the equal-
ity comparison. That’s because a single equals sign is used for assignment
statements. As a result, if you try to code a Boolean expression with a single
equals sign, your code won’t compile.

When you compare numeric values, you usually compare values of the same
data type. However, if you compare different types of numeric values, Java will
automatically cast the less precise numeric type to the more precise type. For
example, if you compare an int type to a double type, the int type will be cast to
the double type before the comparison is made.

How to compare string variables

Because a string is an object, not a primitive data type, you can’t use the
relational operators to compare strings. Instead, you must use the equals or
equalsIgnoreCase methods of the String class that are summarized in figure 2-14.
As you can see, both of these methods require an argument that provides the
String object or literal that you want to compare with the current String object.

In the examples, the first expression is true if the value in the string named
userEntry equals the literal value “Y”. In contrast, the second expression uses the
equalsIgnoreCase method, so it’s true whether the value in userEntry is “Y” or
“y”. Then, the third expression shows how you can use the not operator (!) to
reverse the value of a Boolean expression that compares two strings. Here, the
expression will evaluate to true if the lastName variable is not equal to “Jones”.
The fourth expression is true if the string variable named code equals the string
variable named productCode.

Chapter 2 Introduction to Java Programming 63

Relational operators

Operator Name Description

== Equality Returns a true value if both operands are equal.

!= Inequality Returns a true value if the left and right operands
are not equal.

> Greater Than Returns a true value if the left operand is greater
than the right operand.

< Less Than Returns a true value if the left operand is less
than the right operand.

>= Greater Than Or Equal Returns a true value if the left operand is greater
than or equal to the right operand.

<= Less Than Or Equal Returns a true value if the left operand is less
than or equal to the right operand.

Examples of conditional expressions
discountPercent == 2.3 // equal to a numeric literal
subtotal != 0 // not equal to a numeric literal
years > 0 // greater than a numeric literal
i < months // less than a numeric variable
subtotal >= 500 // greater than or equal to a numeric literal
quantity <= reorderPoint // less than or equal to a numeric variable

Two methods of the String class

Method Description

equals(String) Compares the value of the String object with a String
argument and returns a true value if they are equal.
This method makes a case-sensitive comparison.

equalsIgnoreCase(String) Works like the equals method but is not case-sensitive.

Examples
userEntry.equals("Y") // equal to a string literal
userEntry.equalsIgnoreCase("Y") // equal to a string literal
(!lastName.equals("Jones")) // not equal to a string literal
code.equalsIgnoreCase(productCode) // equal to another string variable

Description
• You can use the relational operators to compare two numeric operands and return a

Boolean value that is either true or false.

• To compare two numeric operands for equality, make sure to use two equals signs.
If you only use one equals sign, you’ll code an assignment statement, and your
code won’t compile.

• If you compare an int with a double, Java will cast the int to a double.

• To test two strings for equality, you must call one of the methods of the String
object. If you use the equality operator, you will get unpredictable results (more
about this in chapter 4).

Figure 2-14 How to compare numeric and string variables

64 Section 1 Essential Java skills

How to code if/else statements

Figure 2-15 shows how to use the if/else statement (or just if statement) to
control the logic of your applications. This statement is the Java implementation
of a control structure known as the selection structure because it lets you select
different actions based on the results of a Boolean expression.

As you can see in the syntax summary, you can code this statement with
just an if clause, you can code it with one or more else if clauses, and you can
code it with a final else clause. In any syntax summary, the ellipsis (…) means
that the preceding element (in this case the else if clause) can be repeated as
many times as it is needed. And the brackets [] mean that the element is op-
tional.

When an if statement is executed, Java begins by evaluating the Boolean
expression in the if clause. If it’s true, the statements within this clause are
executed and the rest of the if/else statement is skipped. If it’s false, Java
evaluates the first else if clause (if there is one). Then, if its Boolean expression
is true, the statements within this else if clause are executed, and the rest of the
if/else statement is skipped. Otherwise, Java evaluates the next else if clause.

This continues with any remaining else if clauses. Finally, if none of the
clauses contains a Boolean expression that evaluates to true, Java executes the
statements in the else clause (if there is one). However, if none of the Boolean
expressions are true and there is no else clause, Java doesn’t execute any
statements.

If a clause only contains one statement, you don’t need to enclose that
statement in braces. This is illustrated by the first statement in the first example
in this figure. However, if you want to code two or more statements within a
clause, you need to code the statements in braces. The braces identify the block
of statements that is executed for the clause.

If you declare a variable within a block, that variable is available only to the
other statements in the block. This can be referred to as block scope. As a result,
if you need to access a variable outside of the block, you should declare it
before the if statement. You’ll see this illustrated by the program at the end of
this chapter.

Chapter 2 Introduction to Java Programming 65

The syntax of the if/else statement
if (booleanExpression) {statements}
[else if (booleanExpression) {statements}] ...
[else {statements}]

Example 1: If statements without else if or else clauses
With a single statement
if (subtotal >= 100)
 discountPercent = .2;

With a block of statements
if (subtotal >= 100)
{
 discountPercent = .2;
 status = "Bulk rate";
}

Example 2: An if statement with an else clause
if (subtotal >= 100)
 discountPercent = .2;
else
 discountPercent = .1;

Example 3: An if statement with else if and else clauses
if (customerType.equals("T"))
 discountPercent = .4;
else if (customerType.equals("C"))
 discountPercent = .2;
else if (subtotal >= 100)
 discountPercent = .2;
else
 discountPercent = .1;

Description
• An if/else statement, or just if statement, always contains an if clause. In addition, it

can contain one or more else if clauses, and a final else clause.

• If a clause requires just one statement, you don’t have to enclose the statement in
braces.

• If a clause requires more than one statement, you enclose the block of statements in
braces.

• Any variables that are declared within a block have block scope so they can only be
used within that block.

Figure 2-15 How to code if/else statements

66 Section 1 Essential Java skills

How to code while statements

Figure 2-16 shows how to code a while statement. This is one way that Java
implements a control structure know as the iteration structure because it lets
you repeat a block of statements. As you will see in chapter 4, though, Java also
offers other implementations of this structure.

When a while statement is executed, the program repeats the statements in
the block of code within the braces while the expression in the statement is true.
In other words, the statement ends when the expression becomes false. If the
expression is false when the statement starts, the statements in the block of code
are never executed.

Because a while statement loops through the statements in the block as
many times as needed, the code within a while statement is often referred to as a
while loop. Here again, any variables that are defined within the block have
block scope, which means that they can’t be accessed outside the block.

The first example in this figure shows how to code a loop that executes a
block of statements while a variable named choice is equal to either “y” or “Y”.
In this case, the statements within the block get input from the console, process
it, and display output. This is a common way to control the execution of a
program, and you’ll see this illustrated in detail in the next figure.

The second example shows how to code a loop that adds the numbers 1
through 4 and stores the result in a variable named sum. Here, a counter vari-
able (or just counter) named i is initialized to 1 and the sum variable is initial-
ized to zero before the loop starts. Then, each time through the loop, the value
of i is added to sum and one is added to i. Because the value of i is 1 the first
time through the loop, for example, 1 is added to sum so its value becomes 1.
The second time through the loop, 2 is added to sum so its value becomes 3.
The third time through the loop, 3 is added to sum so its value becomes 6. And
the fourth time through the loop, 4 is added to sum so its value becomes 10.
When the value of i becomes 5, though, the expression in the while statement is
no longer true and the loop ends. The use of a counter like this is a common
coding practice, and single letters like i, j, and k are commonly used as the
names of counters.

When you code loops, you must be careful to avoid infinite loops. If, for
example, you forget to code a statement that increments the counter variable in
the second example, the loop will never end because the counter will never get
to 5. Then, you have to cancel the application so you can debug your code. In
NetBeans, you can do that by clicking on the Stop button that’s available from
the Output window when a console application is running.

Chapter 2 Introduction to Java Programming 67

The syntax of the while loop
while (booleanExpression)
{
 statements
}

Example 1: A loop that continues while choice is "y" or "Y"
String choice = "y";
while (choice.equalsIgnoreCase("y"))
{
 // get the invoice subtotal from the user
 Scanner sc = new Scanner(System.in);
 System.out.print("Enter subtotal: ");
 double subtotal = sc.nextDouble();

 // the code that processes the user's entry goes here

 // see if the user wants to continue
 System.out.print("Continue? (y/n): ");
 choice = sc.next();
 System.out.println();
}

Example 2: A loop that calculates the sum of the numbers 1 through 4
int i = 1;
int sum = 0;
while (i < 5)
{
 sum = sum + i;
 i = i + 1;
}

Description
• A while statement executes the block of statements within its braces as long as the

Boolean expression is true. When the expression becomes false, the while state-
ment skips its block of statements so the program continues with the next statement
in sequence.

• The statements within a while statement can be referred to as a while loop.

• Any variables that are declared in the block of a while statement have block scope.

• If the Boolean expression in a while statement never becomes false, the statement
never ends. Then, the program goes into an infinite loop. In NetBeans, you can
cancel an infinite loop by clicking on the Stop button in the Output window.

Figure 2-16 How to code while loops

68 Section 1 Essential Java skills

Two illustrative applications
You have now learned enough about Java to write simple applications of

your own. To show you how you can do that, this chapter ends by presenting two
illustrative applications.

The Invoice application

In chapter 1, you saw how the console looks when displayed by NetBeans.
Now, this figure shows the console in a platform-neutral format that’s easy to
read. This is the format that will be used to display console output for the rest of
this book.

Figure 2-17 shows the console and code for an Invoice application. Although
this application is simple, it gets input from the user, performs calculations that
use this input, and displays the results of the calculations. It continues until the
user enters anything other than “Y” or “y” in response to the Continue prompt.

The Invoice application starts by displaying a welcome message at the
console. Then, it creates a Scanner object named sc that will be used in the while
loop of the program. Although this object could be created within the while loop,
that would mean that the object would be recreated each time through the loop,
and that would be inefficient.

Before the while statement is executed, a String object named choice is
initialized to “y”. Then, the loop starts by getting a double value from the user
and storing it in a variable named subtotal. After that, the loop uses an if/else
statement to calculate the discount amount based on the value of subtotal. If, for
example, subtotal is greater than or equal to 200, the discount amount is .2 times
the subtotal (a 20% discount). If that condition isn’t true but subtotal is greater
than or equal to 100, the discount is .1 times the subtotal (a 10% discount).
Otherwise, the discount amount is zero. When the if/else statement is finished,
an assignment statement calculates the invoice total by subtracting
discountAmount from subtotal.

At that point, the program displays the discount percent, discount amount,
and invoice total on the console. Then, it displays a message that asks the user if
he or she wants to continue. If the user enters “y” or “Y”, the loop is repeated.
Otherwise, the program ends.

Although this application illustrates most of what you’ve learned in this
chapter, it has a couple of shortcomings. First, the numeric values that are
displayed should be formatted with two decimal places since these are currency
values. In the next chapter, you’ll learn how to do that type of formatting.

Second, an exception will occur and the program will end prematurely if the
user doesn’t enter one valid double value for the subtotal each time through the
loop. This is a serious problem that isn’t acceptable in a professional program,
and you’ll learn how to prevent problems like this in chapter 5.

In the meantime, if you’re new to programming, you can learn a lot by
writing simple programs like the Invoice program. That will give you a chance to
become comfortable with the coding for input, calculations, output, if/else
statements, and while statements.

Chapter 2 Introduction to Java Programming 69

The console input and output for a test run
Welcome to the Invoice Total Calculator

Enter subtotal: 150
Discount percent: 0.1
Discount amount: 15.0
Invoice total: 135.0

Continue? (y/n):

The code for the application
import java.util.Scanner;

public class InvoiceApp
{
 public static void main(String[] args)
 {
 System.out.println("Welcome to the Invoice Total Calculator");
 System.out.println(); // print a blank line

 Scanner sc = new Scanner(System.in);

 // perform invoice calculations until choice isn't equal to "y" or "Y"
 String choice = "y";
 while (choice.equalsIgnoreCase("y"))
 {
 // get the invoice subtotal from the user
 System.out.print("Enter subtotal: ");
 double subtotal = sc.nextDouble();

 // calculate the discount amount and total
 double discountPercent = 0.0;
 if (subtotal >= 200)
 discountPercent = .2;
 else if (subtotal >= 100)
 discountPercent = .1;
 else
 discountPercent = 0.0;

 double discountAmount = subtotal * discountPercent;
 double total = subtotal - discountAmount;

 // display the discount amount and total
 String message = "Discount percent: " + discountPercent + "\n"
 + "Discount amount: " + discountAmount + "\n"
 + "Invoice total: " + total + "\n";
 System.out.println(message);

 // see if the user wants to continue
 System.out.print("Continue? (y/n): ");
 choice = sc.next();
 System.out.println();
 }
 }
}

Figure 2-17 The Invoice application

70 Section 1 Essential Java skills

The Test Score application

Figure 2-18 presents another Java application that will give you more ideas
for how you can apply what you’ve learned so far. If you look at the console
input and output for this application, you can see that it lets the user enter one or
more test scores. To end the application, the user enters a value of 999. Then,
the application displays the number of test scores that were entered, the total of
the scores, and the average of the scores.

If you look at the code for this application, you can see that it starts by
displaying the instructions for using the application. Then, it declares and
initializes three variables, and it creates a Scanner object that will be used to get
console input.

The while loop in this program continues until the user enters a test score
that’s greater than 100. To start, this loop gets the next test score. Then, if that
test score is less than or equal to 100, the program adds one to scoreCount,
which keeps track of the number of scores, and adds the test score to scoreTotal,
which accumulates the total of the scores. The if statement that does this is
needed, because you don’t want to increase scoreCount and scoreTotal if the
user enters 999 to end the program. When the loop ends, the program calculates
the average score and displays the score count, total, and average.

To include decimal places in the score average, this program declares
scoreTotal and averageScore as a double data types. Declaring scoreTotal as a
double type causes the score average to be calculated with decimal places.
Declaring the averageScore variable as a double type allows it to store those
decimal places.

To allow statements outside of the while loop to access the scoreTotal and
scoreCount variables, this program declares these variables before the while
loop. If these variables were declared inside the while loop, they would only be
available within that block of code and couldn’t be accessed by the statements
that are executed after the while loop. In addition, the logic of the program
wouldn’t work because these variables would be reinitialized each time through
the loop.

Here again, this program has some obvious shortcomings that will be
addressed in later chapters. First, the data isn’t formatted properly, but you’ll
learn how to fix that in the next chapter. Second, an exception will occur and the
program will end prematurely if the user enters invalid data, but you’ll learn
how to fix that in chapter 5.

Chapter 2 Introduction to Java Programming 71

The console input and output for a test run

Please enter test scores that range from 0 to 100.
To end the program enter 999.

Enter score: 90
Enter score: 80
Enter score: 75
Enter score: 999

Score count: 3
Score total: 245.0
Average score: 81.66666666666667

The code for the application
import java.util.Scanner;

public class TestScoreApp
{
 public static void main(String[] args)
 {
 System.out.println(
 "Please enter test scores that range from 0 to 100.");
 System.out.println("To end the program enter 999.");
 System.out.println(); // print a blank line

 // initialize variables and create a Scanner object
 double scoreTotal = 0.0;
 int scoreCount = 0;
 int testScore = 0;
 Scanner sc = new Scanner(System.in);

 // get a series of test scores from the user
 while (testScore <= 100)
 {
 // get the input from the user
 System.out.print("Enter score: ");
 testScore = sc.nextInt();

 // accumulate score count and score total
 if (testScore <= 100)
 {
 scoreCount = scoreCount + 1;
 scoreTotal = scoreTotal + testScore;
 }
 }

 // display the score count, score total, and average score
 double averageScore = scoreTotal / scoreCount;
 String message = "\n"
 + "Score count: " + scoreCount + "\n"
 + "Score total: " + scoreTotal + "\n"
 + "Average score: " + averageScore + "\n";
 System.out.println(message);
 }
}

Figure 2-18 The Test Score application

72 Section 1 Essential Java skills

How to test and debug an application
In chapter 1, you were introduced to errors that are detected by NetBeans as

you enter code, called syntax errors. Because syntax errors keep an application
from being compiled, they are also commonly referred to as compile-time errors.
Once you’ve fixed the syntax errors, you’re ready to test and debug the applica-
tion as described in this topic. Then, in the next two chapters, you’ll learn several
more debugging techniques. And when you do the exercises, you’ll get lots of
practice testing and debugging.

How to test an application

When you test an application, you run it to make sure the application works
correctly. As you test, you should try every possible combination of valid and
invalid data to be certain that the application works correctly under every set of
conditions. Remember that the goal of testing is to find errors, or bugs, not to
show that an application works correctly.

As you test, you will encounter two types of bugs. The first type of bug
causes a runtime error also known as a runtime exception. A runtime error
causes the application to end prematurely, which programmers often refer to as
“crashing” or “blowing up.” In this case, an error message like the one in the first
example in figure 2-19 is displayed, and this message shows the line number of
the statement that was being executed when the error occurred.

The second type of bug produces inaccurate results when an application
runs. These bugs occur due to logic errors in the source code. For instance, the
second example in this figure shows output for the Test Score application. Here,
the final totals were displayed and the application ended before any input was
entered. This type of bug can be more difficult to find and correct than a runtime
error.

How to debug an application

When you debug a program, you find the cause of the bugs, fix them,
recompile, and test again. As you progress through this book and your programs
become more complex, you’ll see that debugging can be one of the most time-
consuming aspects of programming.

To find the cause of runtime errors, you can start by finding the source
statement that was running when the program crashed. You can usually do that
by studying the error message that’s displayed. In the first console in this figure,
for example, you can see that the statement at line 20 in the main method of the
InvoiceApp class was running when the program crashed. That’s the statement
that used the nextDouble method of the Scanner object, and that indicates that
the problem is invalid input data. In chapter 5, you’ll learn how to fix this bug.

To find the cause of incorrect output, you can start by figuring out why the
application produced the output that it did. For instance, you can start by asking
why the second application in this figure didn’t prompt the user to enter any test
scores. Once you figure that out, you’re well on your way to fixing the bug.

Chapter 2 Introduction to Java Programming 73

A runtime error that occurred while testing the Invoice application

Incorrect output produced by the Test Score application

Description
• A syntax or compile-time error occurs when a statement can’t be compiled. Before

you can test an application, you must fix the syntax errors.

• To test an application, you run it to make sure that it works properly no matter what
combinations of valid and invalid data you enter. The goal of testing is to find the
errors (or bugs) in the application.

• To debug an application, you find the causes of the bugs and fix them.

• One type of bug leads to a runtime error (also known as a runtime exception) that
causes the program to end prematurely. This type of bug must be fixed before
testing can continue.

• Even if an application runs to completion, the results may be incorrect due to logic
errors. These bugs must also be fixed.

Debugging tips
• For a runtime error, go to the line in the source code that was running when the

program crashed. In NetBeans, you can do that by clicking on the link to the line of
source code. That should give you a strong indication of what caused the error.

• For a logical error, first figure out how the source code produced that output. Then,
fix the code and test the application again.

Figure 2-19 How to test and debug an application

74 Section 1 Essential Java skills

Perspective

The goal of this chapter has been to get you started with Java program-
ming and to get you started fast. Now, if you understand how the Invoice and
Test Score applications in figures 2-17 and 2-18 work, you’ve come a long
way. You should also be able to write comparable programs of your own.

Keep in mind, though, that this chapter is just an introduction to Java
programming. So in the next chapter, you’ll learn the details about working
with data. In chapter 4, you’ll learn the details about using control statements.
And in chapter 5, you’ll learn how to prevent and handle runtime exceptions.

Summary

• The statements in a Java program direct the operation of the program. The com-
ments document what the program does.

• You must code at least one public class for every Java program that you write. The
main method of this class is executed when you run the class.

• Variables are used to store data that changes as a program runs, and you use
assignment statements to assign values to variables. Two of the most common data
types for numeric variables are the int and double types.

• A string is an object that’s created from the String class, and it can contain any
characters in the character set. You can use the plus sign to join a string with
another string or a data type, and you can use assignment statements to append one
string to another. To include special characters in strings, you can use escape
sequences.

• When you use a constructor to create an object from a Java class, you are creating
an instance of the class. There may be more than one constructor for a class, and a
constructor may require one or more arguments.

• You call a method from an object and you call a static method from a class. A
method may require one or more arguments.

• Before you use many of the classes in the Java API, you should code an import
statement for the class or for the package that contains it.

• You can use the methods of a Scanner object to read data from the console, and
you can use the print and println methods of the System.out object to print data to
the console.

• You can code if statements to control the logic of a program based on the true or
false values of Boolean expressions. You can code while statements to repeat a
series of statements until a Boolean expression becomes false.

• Testing is the process of finding the errors or bugs in an application. Debugging is
the process of locating and fixing the bugs.

Chapter 2 Introduction to Java Programming 75

Before you do the exercises for this chapter
If you haven’t done it already, you should install and configure the JDK, the
NetBeans IDE, and the source code for this book as described in the
appendixes.

Exercise 2-1 Test the Invoice application
In this exercise, you’ll test the Invoice application that’s presented in figure
2-17. That will give you a better idea of how this program works.

1. Start the NetBeans IDE and open the project named ch02_ex1_Invoice. This
project should be in this directory:

C:\murach\java\netbeans\ex_starts

2. Open the file named InvoiceApp.java. Review the code for this file and note
that NetBeans doesn’t display any errors.

3. Test this application with valid subtotal entries like 50, 150, 250, and 1000 so
it’s easy to see whether or not the calculations are correct.

4. Test the application with a subtotal value like 233.33. This will show that the
application doesn’t round the results to two decimal places. But in the next
chapter, you’ll learn how to do that.

5. Test the application with an invalid subtotal value like $1000. This time, the
application should crash. Study the error message that’s displayed and
determine which line of source code in the InvoiceApp class was running
when the error occurred. Then, jump to this line by clicking on the link to it.

6. Restart the application, enter a valid subtotal, and enter 20 when the program
asks you whether you want to continue. What happens and why?

7. Restart the application and enter two values separated by whitespace (like
1000 20) before pressing the Enter key. What happens and why?

Exercise 2-2 Modify the Test Score application
In this exercise, you’ll modify the Test Score application that’s presented in
figure 2-18. That will give you a chance to write some code of your own.

1. Start NetBeans and open the project named ch02_ex2_TestScore that’s in the
ex_starts directory shown in the previous exercise.

2. Test this application with valid data to see how it works. Then, test the
application with invalid data to see what will cause exceptions. Note that if
you enter a test score like 125, the program ends, even though the instructions
say that the program ends when you enter 999.

76 Section 1 Essential Java skills

3. Open the file named TestScoreApp.java and modify the while statement so
the program only ends when you enter 999. Then, test the program to see how
this works.

4. Modify the if statement so it displays an error message like “Invalid entry, not
counted” if the user enters a score that’s greater than 100 but isn’t 999. Then,
test this change.

Exercise 2-3 Modify the Invoice application
In this exercise, you’ll modify the Invoice application. When you’re through
with the modifications, a test run should look something like this:

Welcome to the Invoice Total Calculator

Enter subtotal: 100
Discount percent: 0.1
Discount amount: 10.0
Invoice total: 90.0

Continue? (y/n): y

Enter subtotal: 500
Discount percent: 0.25
Discount amount: 125.0
Invoice total: 375.0

Continue? (y/n): n

Number of invoices: 2
Average invoice: 232.5
Average discount: 67.5

1. Open the project named ch02_ex3_Invoice that’s in the ex_starts directory.
Then, open the file named InvoiceApp.java.

2. Modify the code so the application ends only when the user enters “n” or “N”.
As it is now, the application ends when the user enters anything other than “y”
or “Y”. To do this, you need to use a not operator (!) with the
equalsIgnoreCase method. This is illustrated by the third example in figure
2-14. Then, compile this class and test this change by entering 0 at the
Continue prompt.

3. Modify the code so it provides a discount of 25 percent when the subtotal is
greater than or equal to 500. Then, test this change.

4. Modify the code so it displays the number of invoices, the average invoice
amount, and the average discount amount when the user ends the program.
Then, test this change.

Chapter 2 Introduction to Java Programming 77

Exercise 2-4 Use the Java API documentation
This exercise steps you through the Java API documentation for the Scanner,
String, and Double classes. That will give you a better idea of how extensive the
Java API is.

1. Open a browser and display the Java API documentation as described in
figure 2-10.

2. Click the java.util package in the upper left frame and the Scanner class in the
lower left frame to display the documentation for the Scanner class. Then,
scroll through this documentation to get an idea of its scope.

3. Review the constructors for the Scanner class. The constructor that’s
presented in this chapter has just an InputStream object as its argument. When
you code that argument, remember that System.in represents the InputStream
object for the console.

4. Review the methods of the Scanner class with special attention to the next,
nextInt, and nextDouble methods. Note that there are three next methods and
two nextInt methods. The ones used in this chapter have no arguments. Then,
review the has methods in the Scanner class. You’ll learn how to use some of
these methods in chapter 5.

5. Go to the documentation for the String class, which is in the java.lang
package, and note that it offers a number of constructors. In this chapter,
though, you learned the shortcut for creating String objects because that’s the
best way to do that. Now, review the methods for this class with special
attention to the equals and equalsIgnoreCase methods.

6. Go to the documentation for the Double class, which is also in the java.lang
package. Then, review the static parseDouble and toString methods that you’ll
learn how to use in the next chapter.

If you find the documentation difficult to follow, rest assured that you’ll become
comfortable with it before you finish this book. Once you learn how to create
your own classes, constructors, and methods, it will make more sense.

How to build your
Java programming skills

The easiest way is to let Murach’s Java Programming be
your guide! So if you’ve enjoyed this chapter, I hope you’ll
get your own copy of the book today. And don’t miss its
companion text for web programming, Murach’s Java
Servlets and JSP. You can use both books to:

• Teach yourself how to code desktop and web applications
in Java

• Take advantage of all the time- and work-saving features
of the NetBeans IDE as you develop Java applications

• Understand how object-oriented programming really works to create your own
3-tier database applications, the way the pros do

• Pick up a new skill whenever you want or need to by focusing on material that’s
new to you

• Look up coding details or refresh your memory on forgotten details when you’re
in the middle of developing a Java application

• Loan to your colleagues who will be asking you more and more questions about
Java programming

To get your copy of either or both books, you can order online at www.murach.com
or call us at 1-800-221-5528 (toll-free in the U.S. and Canada). And remember, when
you order directly from us, this book comes with my personal guarantee:

100% Guarantee

You must be satisfied. Each book you buy directly
from us must outperform any competing book or
course you’ve ever tried, or send it back within 90
days for a full refund…no questions asked.

Thanks for your interest in Murach books!

Mike Murach, Publisher

http://www.murach.com/books/javp/index.htm
http://www.murach.com/books/jsp2/index.htm
http://www.murach.com/books/jsp2/index.htm
http://www.murach.com/

