
TRAINING & REFERENCE

murach’s

Java
programming
(Chapter 1)

Thanks for downloading this chapter from Murach’s Java Programming. We hope it
will show you how easy it is to learn from any Murach book, with its paired-pages
presentation, its “how-to” headings, its practical coding examples, and its clear, concise
style.

To view the full table of contents for this book, you can go to our web site. From there,
you can read more about this book, you can find out about any additional downloads
that are available, and you can review our other books on Java development.

Thanks for your interest in our books!

MIKE MURACH & ASSOCIATES, INC.
1-800-221-5528 • (559) 440-9071 • Fax: (559) 440-0963
murachbooks@murach.com • www.murach.com
Copyright © 2011 Mike Murach & Associates. All rights reserved.

http://www.murach.com/books/javp/index.htm
http://www.murach.com/
mailto:murachbooks@murach.com
http://www.murach.com/

What developers have said about previous editions
of Murach’s Java

"Finally there is a Java book for serious programmers doing real life business
applications."

Donna Dean, IS Trainer, Chicago, Illinois

"I bought your Java book a week ago and I am already writing useful
programs, not ‘toys!’"

Richard Cooper, Programmer

"The absolute best teaching text for Java among the gazillions of self-hyped
tutorials and skills books on the market today."

Posted at Amazon.com

"I love your Java book. It cuts right to the essential information, providing the
perfect balance between too many details and too little information. Example
apps are incredible. Keep up the good work."

Steve, Programmer, Denver, Colorado

"Terrific - Fantastic - Superlative! WELL worth several times the purchase
price."

Posted at Amazon.com

"Murach's Java is now my go-to source for reference and learning and
brushing up, well above and beyond the other books in my collection."

Jeff Salter, Sacramento Java Users Group (SacJUG)

"If I’d seen this book first, I would not have wasted money (and time) on 6
other books! This one is highly organized, clear, and very effective as a
learning tool."

Posted at Amazon.com

"The style is clean, very user friendly, and simple. The narrative is totally
accurate and focuses on important issues; it is not dumbed down. This book is
a winner!"

Dr. Richard Wiener, Editor-in-Chief, Journal of Object Technology

iii

Contents
Introduction xv

Section 1 Essential Java skills

Chapter 1 How to get started with Java and NetBeans 3
Chapter 2 Introduction to Java programming 35
Chapter 3 How to work with data 79
Chapter 4 How to code control statements 111
Chapter 5 How to validate input data 145
Chapter 6 How to test and debug an application 167

Section 2 Object-oriented programming with Java

Chapter 7 How to define and use classes 185
Chapter 8 How to work with inheritance 237
Chapter 9 How to work with interfaces 275
Chapter 10 Other object-oriented programming skills 311

Section 3 More Java skills

Chapter 11 How to work with arrays 339
Chapter 12 How to work with collections and generics 363
Chapter 13 How to work with dates and strings 405
Chapter 14 How to handle exceptions 431

Section 4 GUI programming with Swing

Chapter 15 How to develop a form 459
Chapter 16 How to work with controls and handle events 501
Chapter 17 How to develop and deploy applets 537

Section 5 Data access programming with Java

Chapter 18 How to work with text and binary files 559
Chapter 19 How to work with XML 613
Chapter 20 How to work with a Derby database 645
Chapter 21 How to use JDBC to work with a database 677

Section 6 Advanced Java skills

Chapter 22 How to work with threads 717
Chapter 23 How to deploy an application 751

Appendixes

Appendix A How to set up your PC for this book 771
Appendix B How to set up your Mac for this book 777

Maria
Highlight

Maria
Highlight

Chapter 1 How to get started with Java and NetBeans 1

Section 1

Essential Java skills
This section gets you started quickly with Java programming. First,

chapter 1 introduces you to Java applications and shows you how to use
NetBeans to work with Java projects. Then, chapter 2 introduces you to the
basic skills that you need for developing Java applications. When you
complete these chapters, you’ll be able to write, test, and debug simple
applications of your own.

After that, chapter 3 presents the details for working with numeric
data. Chapter 4 presents the details for coding control statements. Chapter
5 shows how to validate the data that’s entered by the user. And chapter 6
shows how to thoroughly test and debug an application. These are the
essential skills that you’ll use in almost every Java application that you
develop. When you finish these chapters, you’ll be able to write solid
programs of your own. And you’ll have the background that you need for
learning how to develop object-oriented programs.

Chapter 1 How to get started with Java and NetBeans 3

1

How to get started
with Java and NetBeans
Before you can begin learning the Java language, you need to install Java. In
addition, you need to choose an IDE or a text editor for working with Java. For
this book, we recommend that you use the NetBeans IDE. Appendix A of this
book shows you how to install both Java and NetBeans on a Windows system,
and appendix B shows you how to install them on a Macintosh OS X system.
Then, this chapter shows how to use the NetBeans IDE to create and work with
a Java application. But first, this chapter presents some background information
about Java.

Introduction to Java ... 4
Toolkits and platforms .. 4
How Java compares to C++ and C# ... 4
Applications, applets, and servlets ... 6
The code for the console version of the Future Value application 8
How Java compiles and interprets code .. 10
Introduction to Java IDEs ... 12

How to use NetBeans to work with existing projects 14
Introduction to Java projects and the NetBeans IDE 14
How to open, close, and delete a project .. 16
How to compile and run a project .. 16
How to use the Output window with a console application 18
How to work with two or more projects ... 20

How to use NetBeans to develop new projects 22
How to create a new project ... 22
How to set the Java version for a project .. 24
How to work with Java source code and files .. 26
How to use the code completion feature .. 28
How to detect and correct syntax errors ... 30

Perspective .. 32

4 Section 1 Essential Java skills

Introduction to Java

In 1996, Sun Microsystems released a new programming language called
Java. Although Oracle bought Sun in 2010, Java remains one of the most widely
used object-oriented programming languages.

Toolkits and platforms

Figure 1-1 describes all major releases of Java starting with version 1.0 and
ending with version 1.7. Throughout Java’s history, the terms Java Development
Kit (JDK) and Software Development Kit (SDK) have been used to describe the
Java toolkit. In this book, we’ll use the term JDK since it’s the most current and
commonly used term. In addition, different numbering schemes have been used
to indicate the version of Java. For example, Java 5.0 and Java 6 refer to ver-
sions 1.5 and 1.6 of Java. In this book, we’ll use the 1.x style of numbering
since this numbering is used by the documentation for Java.

With versions 1.2 through 1.5 of the JDK, the Standard Edition (SE) of Java
was known as Java 2 Platform, Standard Edition (J2SE), and the Enterprise
Edition (EE) was known as the Java 2 Platform, Enterprise Edition (J2EE).
Since version 1.6 of the JDK, the Standard Edition of Java has been known as
Java SE, and the Enterprise Edition is known as Java EE. This book shows how
to use Java SE 7, but it should also work for earlier and future versions of Java.
That includes Java SE 8, which is scheduled for release in late 2012.

How Java compares to C++ and C#

When Sun’s developers created Java, they tried to keep the syntax for Java
similar to the syntax for C++ so it would be easy for C++ programmers to learn
Java. In addition, they designed Java so its applications can be run on any
computer platform. In contrast, C++ needs to have a specific compiler for each
platform. Java was also designed to automatically handle many operations
involving the creation and destruction of memory. This is a key reason why it’s
easier to develop programs and write bug-free code with Java than with C++.

To provide these features, the developers of Java had to sacrifice some
speed (or performance) when compared to C++. For many types of applications,
however, Java’s relative slowness is not an issue.

Microsoft’s Visual C# language is similar to Java in many ways. Like Java,
C# uses a syntax that’s similar to C++ and that automatically handles memory
operations. However, in practice, C# code only runs on Windows. Because of
that, C# is a good choice for developing applications for a Windows-only
environment. However, Java is a better choice if you need to develop cross-
platform applications.

Chapter 1 How to get started with Java and NetBeans 5

Java timeline

Year Month Event

1996 January Sun releases Java Development Kit 1.0 (JDK 1.0).

1997 February Sun releases Java Development Kit 1.1 (JDK 1.1).

1998 December Sun releases the Java 2 Platform with version 1.2
of the Software Development Kit (SDK 1.2).

1999 August Sun releases Java 2 Platform, Standard Edition (J2SE).

December Sun releases Java 2 Platform, Enterprise Edition (J2EE).

2000 May Sun releases J2SE with version 1.3 of the SDK.

2002 February Sun releases J2SE with version 1.4 of the SDK.

2004 September Sun releases J2SE 5.0 with version 1.5 of the JDK.

2006 December Sun releases Java SE 6 with version 1.6 of the JDK.

2010 April Oracle buys Sun.

2011 July Oracle releases Java SE 7 with version 1.7 of the JDK.

Operating systems supported by Java
Windows (XP, Vista, 7)

Linux

Solaris

Macintosh OS X

Java compared to C++ and C#

Feature Description

Syntax Java syntax is similar to C++ and C# syntax.

Platforms Compiled Java code can be run on any platform that has a Java
interpreter. Similarly, compiled C# code (MSIL) can be run on any
system that has the appropriate interpreter. Currently, only
Windows has an interpreter for MSIL. C++ code must be compiled
once for each type of system that it is going to be run on.

Speed C++ and C# run faster than Java, but Java is getting faster with
each new version.

Memory Both Java and C# handle most memory operations automatically,
while C++ programmers must write code that manages memory.

Description
• Versions 1.2 through 1.4 of Java are called the Software Development Kit (SDK).

• Versions 1.5 through 1.7 of Java are called the Java Development Kit (JDK).

Note
• Java SE 8 with version 1.8 of the JDK is expected to be released late in 2012.

Figure 1-1 Introduction to Java

6 Section 1 Essential Java skills

Applications, applets, and servlets

Figure 1-2 describes the three types of programs that you can create with
Java. First, you can use Java to create applications that run directly on your
computer. These are also known as desktop applications.

When you create these desktop applications, you can use a graphical user
interface (GUI) to get user input and perform a calculation as shown at the top
left of this figure. In chapter 15, you’ll learn how to create these types of applica-
tions. Until then, you’ll learn how to create another type of desktop application
known as a console application. This type of application runs in the console, or
command prompt, that’s available from your operating system. An example of a
console application is shown at the top right of this figure.

One of the unique characteristics of Java is that you can use it to create a
special type of web-based application known as an applet. For instance, this
figure shows an applet that works the same way as the applications above it. The
main difference between an application and an applet is that an applet can be
stored in an HTML page and can run inside a Java-enabled browser. As a result,
you can distribute applets via the Internet or an intranet. In chapter 17, you’ll
learn how to create and deploy applets.

Although applets can be useful for creating a complex user interface within a
browser, they have their limitations. First, you usually need to install a plug-in on
each client machine, which isn’t ideal for some types of applications. Second,
since an applet runs within a browser on the client, it’s not ideal for working with
resources that run on the server, such as enterprise databases.

To provide access to enterprise databases, many developers use Java EE to
create applications that are based on servlets. A servlet is a special type of Java
application that runs on the server and can be called by a client, which is usually
a web browser. This is also illustrated in this figure. Here, you can see that the
servlet works much the same way as the applet. The main difference is that the
code for the application runs on the server.

When a web browser calls a servlet, the servlet performs its task and returns
the result to the browser, typically in the form of an HTML page. For example,
suppose a browser requests a servlet that displays all unprocessed invoices that
are stored in a database. Then, when the servlet is executed, it reads data from the
database, formats that data within an HTML page, and returns the HTML page to
the browser.

When you create a servlet-based application like the one shown here, all the
processing takes place on the server and only HTML is returned to the browser.
That means that anyone with an Internet or intranet connection, a web browser,
and adequate security clearance can access and run a servlet-based application.
Because of that, you don’t need to install any special software on the client.

To make it easy to store the results of a servlet within an HTML page, the
Java EE specification provides for JavaServer Pages (JSPs). Most developers use
JSPs together with servlets when developing server-side Java applications.
Although servlets and JSPs aren’t presented in this book, we cover this topic in a
companion book, Murach’s Java Servlets and JSP. For more information about
this book, please visit our web site at www.murach.com.

Chapter 1 How to get started with Java and NetBeans 7

A GUI application and a console application

An applet

A servlet

Figure 1-2 Applications, applets, and servlets

8 Section 1 Essential Java skills

The code for the console version
of the Future Value application

To give you an idea of how the code for a Java application works, figure 1-3
presents the code for the console version of the Future Value application that
you saw in figure 1-2.

If you have experience with other programming languages, you may be able
to understand much of this code already. If not, don’t worry! You’ll learn how
all of this code works in the next few chapters. For now, here’s a brief explana-
tion of this code.

Most of the code for this application is stored in a class named
FutureValueApp. This class begins with an opening brace ({) and ends with a
closing brace (}). Within this class, two methods are defined. These methods
also begin with an opening brace and end with a closing brace, and they are
indented to clearly show that they are contained within the class.

The first method, named main, is the main method for the application. The
code within this method is executed automatically when you run the application.
In this case, the code displays the data the user sees on the console, accepts the
data the user enters at the console, and calculates the future value.

The second method is named calculateFutureValue. This method is called
from the main method and calculates the future value based on the data the user
enters.

Chapter 1 How to get started with Java and NetBeans 9

The code for the Future Value application
import java.util.Scanner;
import java.text.NumberFormat;

public class FutureValueApp
{
 public static void main(String[] args)
 {
 System.out.println("\nWelcome to the Future Value Calculator\n");

 Scanner sc = new Scanner(System.in);
 String choice = "y";

 while (choice.equalsIgnoreCase("y"))
 {
 // get the input from the user
 System.out.print("Enter monthly investment: ");
 double monthlyInvestment = sc.nextDouble();
 System.out.print("Enter yearly interest rate: ");
 double interestRate = sc.nextDouble();
 System.out.print("Enter number of years: ");
 int years = sc.nextInt();

 // calculate the future value
 double monthlyInterestRate = interestRate/12/100;
 int months = years * 12;
 double futureValue = calculateFutureValue(
 monthlyInvestment, monthlyInterestRate, months);

 // format and display the result
 NumberFormat currency = NumberFormat.getCurrencyInstance();
 System.out.println("Future value: " +
 currency.format(futureValue) + "\n");

 // see if the user wants to continue
 System.out.print("Continue? (y/n): ");
 choice = sc.next();
 System.out.println();
 }
 }

 private static double calculateFutureValue(double monthlyInvestment,
 double monthlyInterestRate, int months)
 {
 double futureValue = 0;
 for (int i = 1; i <= months; i++)
 futureValue = (futureValue + monthlyInvestment) *
 (1 + monthlyInterestRate);
 return futureValue;
 }
}

Figure 1-3 The code for the console version of the Future Value application

10 Section 1 Essential Java skills

How Java compiles and interprets code

When you develop a Java application, you create one or more classes. For
each class, you write the Java statements that direct the operation of the class.
Then, you use a Java tool to translate the Java statements into instructions that
can be run by the computer. This process is illustrated in figure 1-4.

To start, you enter and edit the Java source code for a class. These are the
Java statements like the ones you saw in figure 1-3 that tell the application what
to do. Then, you use the Java compiler to compile the source code into a format
known as Java bytecodes. At this point, the bytecodes can be run on any plat-
form that has a Java interpreter to interpret (or translate) the Java bytecodes
into code that can be understood by the underlying operating system.

Since Java interpreters are available for all major operating systems, you
can run Java on most platforms. This is what gives Java applications their
platform independence. In contrast, C++ requires a specific compiler for each
type of platform that its programs are going to run on. When a platform has a
Java interpreter installed on it, it can be considered an implementation of a Java
virtual machine (JVM).

In addition, most modern web browsers can be Java enabled. This allows
applets, which are bytecodes that are downloaded from the Internet or an
intranet, to run within a web browser. To make this work, Sun developed (and
Oracle now maintains) the Java Plug-in. This piece of software is similar to
other browser plug-ins such as Apple QuickTime. It allows the browser to run
the current version of the Java interpreter. You’ll learn more about this in
chapter 17.

Chapter 1 How to get started with Java and NetBeans 11

How Java compiles and interprets code

Description
• When you develop a Java application, you develop one or more classes.

• You can use a Java IDE or any text editor to create, edit, and save the source code
for a Java class. Source code files have the java extension.

• The Java compiler translates Java source code into a platform-independent format
known as Java bytecodes. Files that contain Java bytecodes have the class exten-
sion.

• The Java interpreter executes Java bytecodes. Since Java interpreters exist for all
major operating systems, Java bytecodes can be run on most platforms. A Java
interpreter is an implementation of a Java virtual machine (JVM).

• Most modern web browsers can be Java enabled. This lets applets run within these
browsers. Oracle provides a tool known as the Java Plug-in that allows you to
specify the version of the Java interpreter that you want to use.

Figure 1-4 How Java compiles and interprets code

source code
(*.java files)

bytecodes
(*.class files)

Java IDE
or

Text editor

Java compiler

Java interpreter

Java virtual machine
(JVM)

Operating system

12 Section 1 Essential Java skills

Introduction to Java IDEs

To develop Java applications, you typically use an Integrated Development
Environment (IDE). Although you can use a simple text editor, an IDE provides
features that can make developing Java applications considerably easier. Figure
1-5 describes some of the features of the most popular IDEs.

Note that all of the IDEs listed in this figure are either free or have a free
edition. That makes them particularly attractive to students as well as program-
mers who are learning on their own. Most of these IDEs also run on all modern
operating systems.

The first two IDEs listed in this figure, NetBeans and Eclipse, are arguably
the two most popular Java IDEs. Both of these IDEs provide all of the features
listed in this figure. For example, both of these IDEs help you complete your
code and notify you of potential compile-time errors. They both automatically
compile your code before you run it. And they both include a debugger that lets
you perform standard debugging functions like setting breakpoints, stepping
through code, and viewing the values of variables.

The default installation of NetBeans also provides a feature for building
graphical user interfaces (GUIs). To use this GUI builder, you can drag controls
onto a form on the design surface. Then, you can move, size, and align the
controls and set properties of the controls that determine how they look. As you
do this, the code that displays the GUI is automatically generated. Finally, you
can generate event handlers for the events that you want to handle and then
write the code that handles these events.

On the other hand, the default installation of Eclipse does not provide a GUI
builder. However, several free GUI builder plug-ins are available for Eclipse.
These GUI builders provide features similar to the GUI builder that’s provided
by NetBeans.

The last three IDEs listed in this figure aren’t as popular as NetBeans and
Eclipse. However, we have included them here to give you an idea of the wide
range of IDE choices that are available for Java. In addition, other Java IDEs are
available that aren’t included here.

For this book, we recommend using NetBeans because we think it’s more
intuitive and easier to use than Eclipse, especially for beginners. Once you’re
done with this book, you can switch to whatever IDE you prefer. Fortunately,
once you learn how to use one IDE, it’s fairly easy to learn to use another one.

Chapter 1 How to get started with Java and NetBeans 13

Popular Java IDEs

IDE Description

NetBeans A free, open-source IDE that runs on most modern operating systems.

Eclipse A free, open-source IDE that runs on most modern operating systems.

IntelliJ IDEA The Community Edition of this IDE is a free, open-source IDE that
runs on most modern operating systems.

JCreator LE The Lite Edition (LE) of this IDE is free, but the code is not open-
source, and it only runs on Windows.

BlueJ A free IDE that’s designed for teaching Java to first-year students and
runs on most modern operating systems.

Features provided by most IDEs
• A code editor with code completion and error detection.

• Automatic compilation of classes when you run the application.

• A debugger that lets you set breakpoints, step through code, and view the values of
active variables.

• A GUI builder that lets you create graphical user interfaces by dragging controls
onto a form, setting properties, and writing code that handles the events that are
triggered when a user interacts with the form.

Description
• To develop Java applications, you typically use an Integrated Development Envi-

ronment (IDE) like those listed above. All of these IDEs are either free or have free
editions.

Figure 1-5 Introduction to Java IDEs

14 Section 1 Essential Java skills

How to use NetBeans
to work with existing projects

Now that you have some background information about Java, you’re ready
to start working with existing NetBeans projects. In particular, you’re ready to
learn how to open and run any of the applications for this book. You can
download these applications from our web site as described in appendix A
(Windows) or appendix B (Mac OS X).

Introduction to Java projects
and the NetBeans IDE

Figure 1-6 shows the NetBeans IDE with an open Java project. In
NetBeans, a project is a folder that contains all the files for an application. In
this example, the project is named ch02_Invoice.

In the Projects window, you can see that the folder for the ch02_Invoice
project contains two subfolders. The first one, named Source Packages, contains
the source files for the application. The second one, named Libraries, contains
the Java libraries that are used by the application. In this case, the application
uses just the JDK 1.7 libraries, but you can add others.

Within the Source Packages folder, the source files can be organized into
packages. In this case, no package was specified for the project, so the default
package is used. When you develop simple applications like the one shown
here, that’s usually acceptable. For more complex applications, though, you’ll
want to use two or more packages as shown in chapter 10.

The application shown here consists of a single source file named
InvoiceApp.java. You can see part of this file in the NetBeans code editor. You’ll
learn more about working with this code editor later in this chapter. For now, I
just want to point out that this file defines a single class. Because this class
contains the main method for the application, it’s called the main class. When
you run an application, the main method in the main class is executed by
default.

Chapter 1 How to get started with Java and NetBeans 15

NetBeans with a Java project open

Description
• A NetBeans project consists of a top-level folder that contains the subfolders and

files for an application.

• The Source Packages subfolder contains the .java files that make up the project.
These files define classes that are later compiled into .class files.

• By default, a project consists of a single class that contains the main method. The
main method is the starting point for the application, and the class that contains it is
called the main class.

• The .java files that make up a project can be organized into one or more packages.
If you don’t specify a package for the main class when you create a project, it’s
stored in the default package.

• The Libraries subfolder contains the libraries that are available to your project.
These libraries contain the Java classes that you can use in your projects. By
default, you can use the classes in the JDK libraries.

• The folders, files, and libraries that make up a Java project are listed in the Projects
window. If this window isn’t visible, you can display it by using the
Window�Projects command. Then, you can expand and collapse the nodes in this
window by clicking on the plus and minus signs.

• You can display and work with the source code in a .java file in the code editor
window. For details, see figure 1-11.

Figure 1-6 Introduction to Java projects and the NetBeans IDE

16 Section 1 Essential Java skills

How to open, close, and delete a project

To open a project in NetBeans, you use the Open Project dialog box shown
in figure 1-7. This dialog box lets you navigate to the folder that contains the
project you want to open. In this figure, for example, the Open Project dialog
box shows all of the existing NetBeans projects in this folder:

C:\murach\java\netbeans\book_apps

To clearly indicate when a folder contains a Java project, the Open Project
dialog box displays a small coffee cup icon to the left of the folder name. Then,
you select the project you want to open and click the Open Project button.

When you’re done working with a project, you can close it to remove it
from the Projects window. To do that, you can use one of the techniques de-
scribed in this figure.

You can also delete a project if you decide that you no longer want to work
with it in NetBeans. Before the project is deleted, NetBeans will prompt you to
confirm the deletion. Then, by default, NetBeans deletes all of the files for the
project except for the source files. That way, you can work with those files
outside of NetBeans if you want to. If you want to delete the source files as
well, you can select the “Also Delete Sources” option in the dialog box that’s
displayed.

How to compile and run a project

Figure 1-7 also describes how to compile and run a project. An easy way to
run a project is to press F6. Then, if the project has been modified since the last
time it was compiled, NetBeans automatically compiles the project and runs the
main method in the main class.

If you want to compile a project without running it, you can use the Build
command as described in this figure. You can also use the Clean and Build
command to compile the project and remove any files that are no longer needed.
This sometimes helps to get a project to work correctly after you have copied,
moved, or renamed some of its files.

Chapter 1 How to get started with Java and NetBeans 17

The dialog box for opening a project

How to open, close, and delete a project
• To open a project, click the Open Project button in the toolbar or select the File�Open

Project command. Then, use the Open Project dialog box that’s displayed to locate and
select the project and click the Open Project button.

• You can also open a project by using the File�Open Recent Project command and then
selecting the project from the list that’s displayed.

• To close a project, right-click on the project in the Projects window and select the Close
command, or select the project and then use the File�Close Project command.

• To delete a project, right-click on the project in the Projects window and select the Delete
command. When you do, you’ll have the option of deleting just the files that NetBeans uses
to manage the project or deleting all the folders and files for the project.

How to compile and run a project
• To run a project, press F6, use the Run�Run Project command, or click the Run Project

button in the toolbar.

• When you run a project, NetBeans automatically compiles it. As a result, you usually don’t
need to compile a project separately.

• To compile a project without running it, you can right-click on the project in the Projects
window and select the Build command.

• To delete all compiled files for a project and compile them again, you can right-click on the
project and select the Clean and Build command. This removes files that are no longer
needed and compiles the entire project.

Mac OS X note
• To enable right-clicking with Mac OS X, you can edit the system preferences for the

mouse.

Figure 1-7 Basic skills for working with existing projects

18 Section 1 Essential Java skills

How to use the Output window
with a console application

When you run a console application in NetBeans, any data that’s written to
the console is displayed in the Output window. In addition, The Output window
can accept input. This is illustrated in figure 1-8.

The project shown in this figure is for a simple application that accepts a
subtotal. Then, this application calculates and displays the discount percent,
discount amount, and invoice total based on that subtotal. You’ll see the code for
this application in the next chapter. For now, just focus on the data in the Output
window.

Here, the application started by displaying a welcome message. Then, it
displayed a prompt indicating that I should enter a subtotal. In response, I typed
“100” and pressed Enter. When I did, the application displayed the calculations
and then asked me if I wanted to continue. At this point, the application is still
running, and I can enter “y” to perform another calculation or “n” to end the
application.

When you’re learning Java, it’s common to create applications that use the
console to display output and get input. Because of that, the first three sections
of this book teach you Java using console applications. Then, section 4 of this
book will teach you how to create modern applications with graphical user
interfaces.

Chapter 1 How to get started with Java and NetBeans 19

An application that uses the Output window for input and output

Description
• When you run an application that prints data to the console, that data is displayed

in the Output window.

• When you run an application that requests input from the console, the Output
window pauses to accept the input. Then, you can click in the Output window, type
the input, and press the Enter key.

• In addition to displaying output and accepting input, the Output window can
display other information. For example, it can display messages when the applica-
tion is compiled, and it can display errors that are encountered when an application
is run.

Figure 1-8 How to use the Output window with a console application

20 Section 1 Essential Java skills

How to work with two or more projects

Up to this point, I’ve shown you how to work with a single project in
NetBeans. However, NetBeans lets you open and work with two or more
projects at the same time. If, for example, you want to run some of the projects
from the download for this book before you start creating your own projects,
you can open those projects in NetBeans at the same time. You’ll get a chance to
do that in the first exercise for this chapter.

Figure 1-9 presents the skills for working with two or more projects. To
start, you can run a project by selecting it in the Projects window and then using
the techniques you learned in figure 1-7. Alternatively, you can set one of the
projects as the main project using one of the techniques in this figure. When you
do that, NetBeans identifies the project by boldfacing it in the Projects window.
Then, that project is run automatically when you use one of the standard tech-
niques for running a project. To run a project other than the main project, you
have to right-click on the project or the file that contains the main method for
the project and select the Run or Run File command.

Chapter 1 How to get started with Java and NetBeans 21

NetBeans with two open projects

Description
• NetBeans lets you open and work with two or more projects at the same time.

• When you work with two or more projects, you can set one project as the main
project. To do that, right-click on the project and select Set as Main Project. Or,
when you open the project, select the Open as Main Project option.

• After you set a main project, you can run that project by pressing F6, by using the
Run�Run Main Project command, or by clicking the Run Main Project button in
the toolbar. The Run Main Project command and toolbar button replace the Run
Project command and toolbar button when a main project is set.

• To run a project other than the main project, right-click on the project and select the
Run command, or right-click on the file that contains the main method you want to
run and select the Run File command.

• If you don’t set a main project, you can run any project by selecting that project in
the Projects window and then using standard techniques.

Figure 1-9 How to work with two or more projects

22 Section 1 Essential Java skills

How to use NetBeans
to develop new projects

Now that you know how to work with existing Java projects in NetBeans,
you’re ready to learn how to develop new Java projects. That’s what you’ll learn
in the remainder of this chapter.

How to create a new project

Figure 1-10 presents the dialog boxes for creating a Java application. You
use the New Project dialog box to choose the type of project you want to create.
In most cases, you’ll create a Java Application project as shown here. Then,
when you click the Next button, NetBeans displays a New Java Application
dialog box like the second one in this figure.

The New Java Application dialog box lets you enter a name and location for
the project. In this figure, for example, the project name is “ch01_Test” and it
will be stored in this folder:

C:\murach\java\netbeans\book_apps

If you install the source code for this book as described in the appendix, all of
the applications presented in this book will be stored within this folder.

By default, when you create a Java application in NetBeans, NetBeans
generates a main class with a main method. If that’s not what you want, you can
remove the check mark from the “Create Main Class” option. In most cases,
though, you’ll leave this option checked. Then, you can enter a name for the
main class and, optionally, the package that contains it. For the project in this
figure, for example, NetBeans suggested ch01_test.ch01_Test, where
“ch01_test” is the name of the package and “ch01_Test” is the name of the
class.

In this figure, I deleted the package name, and I changed the name of the
class to TestApp. As a result, NetBeans created a project named ch01_Test that
contains a main class named TestApp. Because I didn’t specify a package name,
this class is stored in the default package.

Like the Open Project dialog box you saw in figure 1-7, the New Java
Application dialog box includes an option that determines if the new project is
set as the main project. If you know that you want a project set as the main
project when you create it, you should select this option. Otherwise, you can set
the main project later using the technique you learned in figure 1-9.

When this dialog box is complete, you can click the Finish button to create
the project and the class that contains the main method. Then, NetBeans creates
a folder that corresponds with the project name, and it creates some additional
files that it uses to configure the project.

Chapter 1 How to get started with Java and NetBeans 23

The dialog boxes for creating a new project

Description
• To create a new project, use the File�New Project command or click the New

Project button in the toolbar to display the New Project dialog box. Then, select a
project type, click the Next button and complete the dialog box that’s displayed.

• To create a Java Application project, enter the project name and location and the
name you want to use for the main class. You can also enter the name of the
package that will contain the main class, but that’s not necessary.

Figure 1-10 How to create a new project

24 Section 1 Essential Java skills

How to set the Java version for a project

In some cases, you’ll want to change the version of Java that a project uses.
For example, you might want the project to run on computers with earlier
versions of Java. Then, you can use the Project Properties dialog box in figure
1-11 to change the version for the project.

To use an earlier version of Java, you start by displaying the Sources
category. Then, you select the version you want to use from the Source/Binary
Format drop-down list. In this figure, I selected JDK 6. As a result, any lan-
guage features that were added after Java 6 won’t be available to the project. In
addition, the bytecodes that are generated by the compiler for the project will
run under Java 6 and later versions.

Although setting the Source/Binary Format option will keep you from using
language features that were added with a later version of Java, it won’t keep you
from using features of the JDK libraries for later versions. In many cases, that’s
not a problem. If you want to be sure that you don’t use any of the new features,
though, you should change the Java platform that’s used by the project. To do
that, just select the JDK version from the Java Platform drop-down list in the
Libraries category of the Project Properties dialog box.

Note that the Java Platform drop-down list only includes the versions you
have installed on your computer. Before you can select a different version, then,
you may have to install it as described in the appendix A (Windows) or appen-
dix B (Mac OS X). After you do that, you can click the Manage Platforms
button to the right of the Java Platform drop-down list to display a dialog box
that lets you add the version you installed.

You might also want to change the Java version for a project if a newer
version becomes available and you want to use some of the features of that
version. After you install the new version, you can use the JDK libraries for that
version in a project by selecting the JDK from the Java Platform drop-down list.
In addition, if you want to use the new language features of that version and you
don’t need the project to run under earlier versions of Java, you can select the
new JDK from the Source/Binary Format drop-down list.

Note that to use a newer version, you must set the Java Platform option first.
Otherwise, that JDK won’t be available in the Source/Binary Format list.

Chapter 1 How to get started with Java and NetBeans 25

The Project Properties dialog box

Description
• The Project Properties dialog box lets you set various properties that affect the

project. To display this dialog box, right-click on the project in the Projects window
and select the Properties command.

• To set the version of the Java language and compiled bytecodes the project uses,
select the version from the Source/Binary Format drop-down list in the Sources
category. Then, the compiled bytecodes for the project will run under this version
of Java and later. In addition, the project can only use language features for the
specified version of Java.

• To set the version of the JDK libraries that are available to the project, select the
version from the Java Platform drop-down list in the Libraries category. Then, your
project can only use the features that are available from that version of the JDK
libraries. For this to work, the version of the JDK you want to use must be installed
on your system.

• To be sure that the JDK libraries are compatible with the language features and
bytecodes, select the same version of the JDK from the Java Platform and the
Source/Binary Format drop-down lists.

Figure 1-11 How to set the Java version for a project

26 Section 1 Essential Java skills

How to work with Java source code and files

When you create a new project that contains a class with a main method, the
class is typically opened in a new code editor window as shown in figure 1-12.
To make it easier to for you to recognize the Java syntax, the code editor uses
different colors for different language elements. In addition, NetBeans provides
standard File and Edit menus and keystroke shortcuts that let you save and edit
the source code. For example, you can press Ctrl+S to save your source code,
and you can use standard commands to cut, copy, and paste code.

When you create a project with a main class, NetBeans generates some
code for you. In this figure, for example, NetBeans generated the code that
declares the class, the code that declares the main method, and comments that
describe the class and method. Although you can delete or modify the class and
method declarations, you won’t usually do that. However, you may want to
delete or modify some or all of the comments.

If the source code you want to work with isn’t displayed in a code editor
window, you can use the Projects window to navigate to the .java file and then
double-click on it to open it in a code editor window. In this figure, for example,
you can see the TestApp.java file in the Projects window. Notice that this file is
stored in the default package of the Source Packages folder, since no package
was specified when the project was created.

You can also rename or delete a .java file from the Projects window. To do
that, just right-click on the file and select the appropriate command. If you
rename a file, NetBeans automatically changes both the name of the .java file
and the name of the class. Since the name of the .java file must match the name
of the class, this is usually what you want.

Chapter 1 How to get started with Java and NetBeans 27

Net Bean’s code editor with the starting source code for a project

Description
• To open a .java file in the code editor, double-click on it in the Projects window. Then,

you can use normal editing techniques to work with the source code.

• To collapse the code for a method or comment, click the minus sign (-) to its left. Then,
a plus sign (+) appears to the left of the method or comment, and you can click the plus
sign to display the code again.

• To save the source code for a file, use the File�Save command (Ctrl+S) or click the
Save All Files button in the toolbar. This automatically compiles the file so it doesn’t
have to be compiled when the project is run.

• To rename a file, right-click on it, select the Refactor�Rename command, and enter the
new name in the resulting dialog box.

• To delete a file, you can right-click on it, select the Delete command, and confirm the
deletion in the resulting dialog box.

Figure 1-12 How to work with Java source code and files

28 Section 1 Essential Java skills

How to use the code completion feature

Figure 1-13 shows how to use the code completion feature. This feature
prevents you from making typing mistakes, and it allows you to discover what
fields and methods are available from various classes and objects. In this figure,
for example, I started to enter a statement that prints text to the console.

First, I entered “sys” and pressed Ctrl+Spacebar (both keys at the same
time). This displayed a list with the System class as the only option. Then, I
pressed the Enter key to automatically enter the rest of the class name.

Next, I typed a period. This displayed a list of fields and methods available
from the System class. Then, I used the arrow keys to select the field named out
and pressed the Enter key to automatically enter that field name.

Finally, I typed another period. This displayed a long list of method names.
Then, I typed “pr” to scroll down the list to the methods that start with “pr”, and
I used the arrow keys to select one of the println methods as shown in the figure.
At this point, I could press Enter to have NetBeans enter the method into the
editor for me.

When you use code completion, it automatically enters opening and closing
parentheses and arguments whenever they’re needed. In this figure, for example,
you can see that the println method that I’ve selected is followed by a set of
parentheses that contains a string argument. When I inserted this method into
the code editor, the parentheses and arguments were inserted and the argument
was highlighted so I could enter a value for it.

The code completion feature can also make it easy for you to enter values
for string variables. If you type a quotation mark to identify a string value, the
code completion feature automatically enters both opening and closing quota-
tion marks and places the cursor between the two. At this point, you can enter
the text for the string.

If you experiment with the code completion feature, you’ll quickly see
when it helps you enter code more quickly and when it makes sense to enter the
code yourself. In addition, you’ll see that it helps you understand the kinds of
fields and methods that are available to the various classes and objects that
you’re working with. This will make more sense as you learn about object-
oriented programming in Java beginning in the next chapter.

Chapter 1 How to get started with Java and NetBeans 29

The code editor with a code completion list

Description
• You can use the code completion feature to help you enter the names of classes and

objects and select from the methods and fields that are available for a class or
object.

• To activate the code completion feature for entering a class or object name, press
Ctrl+Spacebar after entering one or more letters of the class or object name. Then,
a list of all the classes and objects that start with those letters is displayed.

• To activate the code completion feature for a method or field of a class or object,
enter a period after a class or object name. Then, a list of all the methods and fields
for that class or object is displayed.

• To insert an item from a code completion list, select the item and then press the
Enter key. If the item requires parentheses, they’re added automatically. If the item
requires one or more arguments, default values are added for those arguments and
the first argument is highlighted so you can enter its value. Then, you can press the
Tab key and enter the values for any remaining arguments.

• If you enter the opening quote for a string value, the code completion feature
automatically adds the closing quote and places the cursor between the two quotes
so you can enter a value.

Figure 1-13 How to use the code completion feature

30 Section 1 Essential Java skills

How to detect and correct syntax errors

In NetBeans, a syntax error is caused by a statement that won’t compile. As you
enter text into the code editor, NetBeans displays syntax errors whenever it detects
them. In figure 1-14, for example, NetBeans displays an error that indicates that a
semicolon needs to be entered to complete the statement. This error is marked with a
red icon to the left of the statement. In addition, the statement that contains the error is
marked with a wavy red underline.

If you position the mouse cursor over the red error icon or over the statement itself,
NetBeans displays a description of the error. In this figure, for example, the description
indicates that NetBeans expects a semicolon at the end of the statement. As a result,
you can fix the error by typing the semicolon.

Chapter 1 How to get started with Java and NetBeans 31

The code editor with an error displayed

Description
• NetBeans often detects syntax errors as you enter code into the code editor.

• When NetBeans detects a syntax error, it displays a red error icon to the left of the
statement in error and it places a red wavy line under the statement.

• To get more information about a syntax error, you can position the mouse pointer
over the error icon. Or, you can move the cursor to the line that contains the error
and press Alt+Enter.

Figure 1-14 How to detect and correct syntax errors

32 Section 1 Essential Java skills

Perspective
In this chapter, you were introduced to Java, and you learned how to use

NetBeans to create and run a Java application. With that as background, you’re
ready to learn how to write your own Java applications. But first, I recommend
that you familiarize yourself with NetBeans by doing the exercises at the end
of this chapter.

Summary

• You use the Java Development Kit (JDK) to develop Java applications. This used
to be called the Software Development Kit (SDK) for Java.

• As of version 6, the Standard Edition (SE) of Java is called Java SE. In older
versions, it was called the Java 2 Platform, Standard Edition (J2SE).

• You can use Java SE to create applications (also known as desktop applications)
that run on your computer and a special type of Internet-based application known
as an applet.

• A desktop application can use a graphical user interface (GUI) or a console to
display output and get user input. Applications that use a console to interact with
the user are known as console applications.

• You can use the Enterprise Edition (EE) of Java, which is known as Java EE, to
create server-side applications using servlets and JavaServer Pages (JSPs).

• The Java compiler translates source code into a platform-independent format
known as Java bytecodes.

• Any machine that has a Java interpreter installed on it can be considered an
implementation of a Java virtual machine (JVM).

• An Integrated Development Environment (IDE) such as NetBeans can make
working with Java easier.

• In NetBeans, a project is a folder that contains all of the files that make up an
application.

• Java code is stored in classes. To organize multiple classes, you can store them in
packages.

• The main class of an application is the class that contains the main method, which
is the starting point of the application.

• If an application prints text to the console, NetBeans displays the text in the Output
window. NetBeans also allows you to enter input into the Output window.

• When multiple projects are open, NetBeans identifies the main project by
boldfacing its name in the Projects window.

• You can use the NetBeans code editor to enter and edit code. As you enter code,
you can use the code completion feature to help you enter the names of classes and
objects and select from fields and methods.

Chapter 1 How to get started with Java and NetBeans 33

Before you do the exercises for this chapter
Before you do any of the exercises in this book, you need to install the JDK and
NetBeans. In addition, you need to install the source code for this book from
our web site (www.murach.com). See appendix A (Windows) or appendix B
(Mac OS X) for details.

Exercise 1-1 Use NetBeans to open
and run two projects

This exercise guides you through the process of using NetBeans to open and run
two console applications.

Open and run the Invoice application
1. Start NetBeans. When the Start Page is displayed, review the information on

its tabs. Then, close this page.

2. Open the project named ch01_ex1_Invoice. The project should be stored in
this directory:
C:\murach\java\netbeans\ex_starts

3. Open the InvoiceApp.java file in the code editor and review its code to get an
idea of how this application works.

4. Press F6 to run the application. Enter a subtotal when you’re prompted, and
then enter “n” when you’re asked if you want to continue.

Open and run the Test Score application
5. Open the project named ch01_ex2_TestScore. When you do, make sure to

select the “Open as Main Project” option. Then, open the TestScoreApp.java
file in the code editor and review its code.

6. Click the Run Project button in the toolbar to run the application. Enter one or
more grades when you’re prompted, and enter 999 to end the application.

Set the main project and run the applications again
7. Set the Invoice application as the main project. Then, press F6 to run this

application. When you’re done, end the application.

8. Right-click on the Test Score application and select the Run command to run
this application. When you’re done, end the application.

9. Close both projects.

34 Section 1 Essential Java skills

Exercise 1-2 Use NetBeans to develop
an application

This exercise guides you through the process of using NetBeans to enter, save,
compile, and run a simple application.

Enter the source code and run the application
1. Start NetBeans if it isn’t already open.

2. Select the File�New Project command from the NetBeans menu system.
Then, use the resulting dialog boxes to create a Java Application project
named ch01_Test that contains a main class named TestApp. Store the project
in this directory:
C:\murach\java\netbeans\ex_starts

3. Modify the generated code for the TestApp class so it looks like this (type
carefully and use the same capitalization):
public class TestApp
{
 public static void main(String[] args)
 {
 System.out.println(

 "This Java application has run successfully.");
 }
}

4. Press F6 to compile and run the application. This should display “This Java
application has run successfully.” in the Output window.

Use the code completion feature
5. Enter the statement that starts with System.out again, right after the first

statement. This time, type “sys” and then press Ctrl+Spacebar. Then, use the
code completion feature to select the System class, and complete the
statement.

6. Enter this statement a third time, right after the second statement. This time,
type System, enter a period, and select out from the list that’s displayed. Then,
enter another period, select println(String x), and complete the statement. You
should now have the same statement three times in a row.

7. Run the application again to see that the message is displayed three times in a
row in the Output window.

Introduce and correct a syntax error
8. In the code editor window, delete the semicolon at the end of the first println

statement, and NetBeans will display an error icon to the left of the statement.

9. Correct the error, and NetBeans will remove the error icon.

10. Use the File�Save command (Ctrl+S) to save the changes.

How to build your
Java programming skills

The easiest way is to let Murach’s Java Programming be
your guide! So if you’ve enjoyed this chapter, I hope you’ll
get your own copy of the book today. And don’t miss its
companion text for web programming, Murach’s Java
Servlets and JSP. You can use both books to:

• Teach yourself how to code desktop and web applications
in Java

• Take advantage of all the time- and work-saving features
of the NetBeans IDE as you develop Java applications

• Understand how object-oriented programming really works to create your own
3-tier database applications, the way the pros do

• Pick up a new skill whenever you want or need to by focusing on material that’s
new to you

• Look up coding details or refresh your memory on forgotten details when you’re
in the middle of developing a Java application

• Loan to your colleagues who will be asking you more and more questions about
Java programming

To get your copy of either or both books, you can order online at www.murach.com
or call us at 1-800-221-5528 (toll-free in the U.S. and Canada). And remember, when
you order directly from us, this book comes with my personal guarantee:

100% Guarantee

You must be satisfied. Each book you buy directly
from us must outperform any competing book or
course you’ve ever tried, or send it back within 90
days for a full refund…no questions asked.

Thanks for your interest in Murach books!

Mike Murach, Publisher

http://www.murach.com/books/javp/index.htm
http://www.murach.com/books/jsp2/index.htm
http://www.murach.com/books/jsp2/index.htm
http://www.murach.com/

